Two More from Pauling and Rath

Linus Pauling, 1991.

Linus Pauling, 1991.

In the early 1990s, Linus Pauling and Matthias Rath drafted two patent documents not related to their lipoprotein(a) research – documents that did not ultimately result in finalized patents. One of these documents described an attempt to use synthetic polypeptides to prevent disease by helping synthesize an optimum level and strength of collagen in the body.

“Polypeptide and Methods of Use,” application drafted July 10, 1991.

A polypeptide is a linear chain of two or more amino acids linked by a covalent bond. Scientists had asserted that synthetic polypeptides would be ineffective because polypeptides are fairly conservative molecules and, as such, trying to recreate them would result in substances with little or no potency. Pauling disagreed with this sentiment completely and utilized synthetics for the purpose of his research because they were fairly easy to manufacture.

Pauling and Rath believed that synthetic polypeptides would remain viable and that arguments against them were based in a fundamental misunderstanding of what makes a polypeptide potent in the first place. A polypeptide chain with an arginine-glycine-aspartic acid (RGD) sequence was, specifically, what the duo was investigating, and the RGD sequence is the piece of the puzzle that many scientists felt would be a source of potency trouble in synthetics.

Pauling and Rath felt that the RGD sequence was not actually important, but that the R and D was important. Specifically, beginning a chain with R (arginine) then ending it with D (aspartic acid) – both highly polarized end peptides – was the key to imbuing a polypeptide with strength and usefulness. In the eyes of the two researchers, if R and D were in the right spots, it did not particularly matter what resided in between them.

Pauling and Rath’s polypeptide treatment was designed to treat diseases that were related to cell migration or cell membrane adhesion. The treatment would cause certain cells more difficulty in penetrating membranes or just migrating in general; so ideally, it would contain diseases such as metastatic cancer. Also, by preventing membrane penetration and adherence, diseases such as infectious viral agents – which rely on doing just that to spread – would be contained as well.


Matthias Rath

Matthias Rath

“Treatment of Pathological States Related to Degeneration of Extracellular Matrix System Treatment,” application declaration drafted November 1, 1991.

The last patent considered by Pauling and Rath was titled “The Treatment of Pathological States Related to Degeneration of the Extracellular Matrix System.” The extracellular matrix (ECM) provides structural support to animal cells, is the defining feature of connective tissues and serves other important duties in the cellular structure. The November patent idea was for, once again, a Vitamin C mixture, this one designed to prevent the deterioration of the ECM, thought to both contribute to and be characteristic of the spread of diseases, specifically metastatic cancer.

In this instance, Pauling and Rath’s research revolved around apoprotein(a) [apo(a)] which, they theorized, acted as a sort of temporary surrogate to Vitamin C. When Vitamin C levels in the bloodstream drop, apo(a) and lipoprotein(a) levels increase. Apo(a), a crucial component of the body’s defense against disease, was seen as acting as “temporary Vitamin C,” which in the short term was beneficial, but after longer periods of time would actually contribute to ECM deterioration and other health issues.

Pauling and Rath worked with Dr. Aleksandra Niedzwiecki and Dr. Jerzy Jurka on this project, and they all concluded that apo(a) helped the body to fight free radicals and other diseases.  This said, the team also felt that apo(a) needed the help of large amounts of Vitamin C to be effective, especially because, as the body became sick or fought off illness, Vitamin C levels in the blood dropped. As such, large doses of Vitamin C were the best course of action to ensure the strength of the ECM and subsequent general health.

Matthias Rath departed from the Linus Pauling Institute of Science and Medicine in 1992 and Dr. Niedzwiecki moved to work with him at his new institute.  Linus Pauling was already fighting his own cancer at that time and ultimately died in August 1994.  As a result of both events, the patent applications initiated in support of the two initiatives described above appear not to have been vigorously pursued.

Lipoprotein(a) Patents

Promotional literature for the Linus Pauling Heart Foundation, ca. 1992.

Promotional literature for the Linus Pauling Heart Foundation, ca. 1992.

[Part 2 of 2]

With the results of their Lipoprotein(a) [LP(a)] experiments in hand, Linus Pauling and Matthias Rath decided to create a treatment and try to patent it. Their treatment relied on three main ideas: First, that increased Vitamin C levels in the bloodstream would prevent the creation of lesions to which Lp(a) might bind. Second, that lipoprotein binding inhibitors would detach any plaque that had already built up. And lastly, that Vitamin C would then also help the body to filter out Lp(a). In this way, it could be used to both treat and prevent cardiovascular disease (CVD) and other related cardiovascular problems.

The duo also saw great potential use for their research in surgery – specifically angiopathy, bypass surgery, organ transplantation, and hemodialysis. Lysine or other similar chemicals naturally help to speed the healing process and also act as blood clotting agents, therefore reducing the risk of blood loss during surgery. Also, patients undergoing organ transplant surgery, bypass surgery, and hemodialysis often suffer strong recurrences of CVD, which Pauling and Rath felt was due to depleted Vitamin C levels from blood loss. Similarly, diabetics often suffer from both inhibited Vitamin C absorption and higher levels of Lp(a), leading Pauling and Rath to hope that their work could help to treat diabetes-related CVD as well.

When living patients were using their treatment, the mixture was designed to be taken orally in pill or liquid form, or injected intravenously. Pauling also wondered if the mixture could be taken subcutaneously (injected into the deepest level of skin), percutaneously (injected into internal organs), or intramuscularly (injected into the muscle). When being used as preparation for transplant surgery, the organs to be transplanted were to be soaked in the mixture. Later research done by other scientists showed that Vitamin C is not absorbed into the bloodstream like it was thought, and that there are specific Vitamin C carrier molecules in the digestive tract, therefore limiting the amount of Vitamin C a person can absorb when taken orally. As such, injection is a much more effective method of getting Vitamin C into the bloodstream.

Pauling and Rath’s work was polarizing, if not unprecedented. As far back as the early 1970s, enthusiastic support for Vitamin C by Pauling and others had been a point of extreme controversy. Now, even with this latest batch of research, many scientists and doctors seemed to think that their conclusions were grossly incorrect, and in some cases even dangerous for people. Pauling, Rath, and their supporters felt that the harsh criticism emerged, at least in part, from pharmaceutical companies concerned about losing revenue if people stopped buying their expensive medications and instead bought inexpensive, common Vitamin C. On the flip side, many of the people who felt that their research was correct were absolutely steadfast in their support.

The controversy surprised Pauling. He repeatedly expressed these feelings, pointing out that he was not the first to make claims about the benefits of Vitamin C nor even the most extreme, and yet he was viewed as a controversial figure espousing fringe medicine. The Pauling-Rath team was not the only organization researching and promoting the positive effects of Vitamin C. Other groups, such as that led by Dr. Valentin Fuster of Harvard Medical School, were conducting similar experiments. Pauling and Rath attempted to collaborate with them where possible, often with success. But more generally the duo had to rely heavily upon individual case histories to support their research, largely because they were unable to convince major American institutions to conduct their own studies or to sponsor the Linus Pauling Institute of Science and Medicine’s studies.

Figure 1 from Pauling and Rath's July 1990 patent application.

Figure 1 from Pauling and Rath’s July 1990 patent application.

On July 27, 1993, Pauling and Rath were awarded a patent for the application filed in April 1990. On January 11, 1994, they received a second patent for the application filed in July 1990. Shortly afterward, in March 1994, the two filed a third application, following similar grounds, titled “Therapeutic Lysine Salt Composition and Method of Use.” The compound they were patenting was a mixture of ascorbate, nicotinic acid (also known as Vitamin B3 or niacin) and lysine, or a lysine derivative. The mixture was to be combined at a ratio of 4:1:1, and include a minimum of 400 mg of ascorbate, 100 mg niacin and 100 mg lysine. The mixture functioned more or less identically to the previous two patents, the major difference being the inclusion of Vitamin B3 for its antioxidant properties. Pauling and Rath also encouraged the inclusion of additional antioxidant vitamins.

This was the last patent that Pauling and Rath would file together. Shortly afterward the two experienced a falling out and Rath left LPISM.  A few months later, on August 19, 1994, Linus Pauling passed away from cancer.

The third patent application was approved and awarded to Pauling and Rath in 1997. The two hadn’t made any profit off of the previous patents to speak of, and research that followed in the later 1990s and after 2000 showed that Vitamin C appeared to have no real effect on Lp(a). The discrepancy between the Pauling-Rath trials and subsequent tests seem to be attributable to the major differences between the two test subjects – humans and guinea pigs. However, other trials have shown that large doses of Vitamin C are useful in fighting cardiovascular disease – for reasons other than Lp(a) levels – and also work to combat stroke, decrease blood pressure and provide other health benefits.

Additional studies in the wake of Pauling and Rath have also revealed the complexity of Lp(a).  The compound is today regarded to be somewhat of a mystery in terms of function, as scientists aren’t very clear on what it does in the human body. Also, “normal” levels of Lp(a) vary massively on an individual basis, a trait that seems to trend along racial lines. As a result, choosing Lp(a) as a target for medication has proven to be extremely difficult.

Experimenting with Lipoprotein(a)

lpa

[Part 1 of 2]

In the late 1980s into early 1990, Linus Pauling and a colleague, Matthias Rath, worked intensively on the health benefits of Vitamin C and Lipoprotein(a) binding inhibitors. In 1990 they applied for two patents related to that research. The first, applied for in April, was titled “Use of ascorbate and tranexamic acid solution for organ and blood vessel treatment prior to transplantation.” The second, submitted in July, was titled “Prevention and treatment of occlusive cardiovascular disease with ascorbate and substances that inhibit the binding of lipoprotein (A).”

The technique that Pauling and Rath were attempting to patent in April was both a method and a pharmaceutical agent designed to prevent and treat fatty plaque buildup in arteries and organs and also prevent blood loss during surgery by introducing into a patient (or organ) a mixture of ascorbate and lipoprotein(a) [Lp(a)] binding inhibitors, such as tranexamic acid.

Tranexamic acid is a synthetic version of Lysine, and ascorbate is the shortened name for L-ascorbic acid, or more commonly, Vitamin C. Lp(a) is a biochemical compound of lipids and proteins which binds to fibrin and fibrogen in the walls of arteries and other organs, which causes plaque buildup, which in turn often results in atherosclerosis – the thickening and embrittling of arterial walls – and cardiovascular disease (CVD), one of the most common causes of death in the United States. The second patent described effectively the same method, but focused more on CVD and less on surgery.

Pauling and Rath noticed that humans and a select few other animals are the only creatures that suffer from heart attacks and other issues associated with the buildup of plaque in the circulatory system. One common link between all of these creatures is the fact that they do not naturally produce Vitamin C, and therefore must obtain it solely through diet. The duo hypothesized that the cause of Lp(a) buildup was due to a lack of Vitamin C, and that if Vitamin C intake was increased, it would help the body filter out Lp(a) and therefore decrease the amount of Lp(a) in the bloodstream. They decided to run tests on Hartley guinea pigs, since they are one of the few other animals that don’t synthesize their own Vitamin C.

rath

The first test was run on three female guinea pigs, each about a year old and weighing 800 grams. The animals were all fed a diet devoid of ascorbate (e.g., a hypoascorbate diet), and given an injection daily of ascorbate so that Pauling and Rath could easily monitor and control their intake. The first pig was given ascorbate at a ratio equivalent to 1 mg per kilogram of body weight (1 mg/kg BW). The second pig was given 4 mg/kg BW, and the third was given 40 mg/kg BW.

The experiment only lasted three weeks, because Pauling and Rath didn’t want to inflict scurvy upon the guinea pigs. Creatures deprived of Vitamin C for prolonged periods develop scurvy, an incredibly painful condition where the victim becomes lethargic and begins to suffer skin color and texture changes, easy bruising, brittle and painful bones, poor wound healing, neuropathy, fever and eventually death.

The guinea pigs had their blood drawn at the start of the test, then once again after ten days. At the end of three weeks, the animals were anesthetized and euthanized, then dissected. Their results showed that the hypoascorbate guinea pigs had noticeably higher plaque buildup and general amounts of Lp(a) in their bloodstream. Upon closer analysis of the organs and the arterial wall, the researchers discovered that the guinea pigs had also developed lesions along the walls of their arteries, to which Lp(a) was binding even more than normal.

Pauling and Rath then ran a more expansive second test, with a test time of seven weeks and a test group of thirty-three male Hartley guinea pigs, each approximately five months old and weighing 550g. At the outset, the subjects were split into multiple groups. Group A consisted of eight guinea pigs and was given 40 mg/kg BW of ascorbate daily, while Group B consisted of 16 guinea pigs given 2 mg/kg BW daily. At five weeks all of Group A was euthanized and studied, as was half of Group B. The second half of Group B then had their daily dosage increased to 1.3 g/kg BW for two weeks before being euthanized.

Once again, it was observed that the hypoascorbate guinea pigs had developed lesions in their arterial walls and organs, as well as increased plaque buildup and Lp(a) levels. On the same token, the second half of Group B showed decreased levels of Lp(a) in their blood and decreased amounts of plaque after their ascorbate intake was dramatically increased.

Pauling and Rath felt that their research was confirming their hypothesis, and wanted to see how it would function on humans. Their method here was to obtain post-mortem pieces of human arterial wall. They cut the pieces into smaller sections, and for one minute placed a piece weighing 100 mg into a glass potter containing 2.5 ml of a mixture of ascorbate and tranexamic acid. Compared to the other pieces, the portions in the mixture released sizable amount of Lp(a).

This promising data in hand, Pauling and Rath then began to think about patenting and marketing their work.

Resolving Superconductivity

Figure 1 from Pauling's superconductivity patent.

Figure 1 from Pauling’s superconductivity patent.

[Part 3 of 3]

As they continued to explore possibilities for creating improved superconductors, one challenge that Linus Pauling and his associates faced was in verifying that their technique was successful. This was in part due to the fact that measuring changes in superconductivity was very difficult, given the small diameter of the tin used and the challenge in gaining ample contact.

Attempting to gauge the efficacy of their superconducting material, Pauling’s colleague Zelek Herman sent a sample off to Dr. Howard Hart at the General Electric Research and Development Center in Schenectady, New York, requesting that Hart run tests of their samples to determine a temperature of superconductivity (Tc), if one existed at all.  It is from this communication that we are able to learn much about the the samples that the group created.

Herman sent two vials to be tested, with a third vial to be used as a reference. The first vial contained a piece of a strand of a superconducting niobium-titanium seven-stranded cable about 9 cm long. This was produced by snipping off a piece of one of the strands, immersing it in 90% formic acid for one hour, rinsing it with deionized water, and drying it with a paper towel to remove residual heavy formvar. Then it was rubbed with fine steel wool and blown with compressed air. The contents of this first vial were to serve as the reference for testing the wires in vials two and three.

The second vial contained a piece of similar length, but the mass was much less and it was 0.05 mm thick, as opposed to the reference sample’s 0.8 mm diameter. The third vial contained three pieces of square wire ranging between 9 and 11 centimeters, each of which had a diameter of about 0.3 mm, and estimated to be about 4.8% superconducting material. At the end of Herman’s accompanying letter to Hart, he added that he did “not expect any elevation in Tc for any of these samples; rather, this is a test to see if you can detect a superconducting transition for samples containing a small, but continuous, amount of superconductor.”  Hart’s reply, if one was sent, is not held with the copy of Herman’s original letter extant in the Pauling Papers.

Early Pauling notes on superconductivity, August 1971.


First drafted in May 1988, a copy of the patent application for Pauling’s “Technique for Increasing the Critical Temperature of Superconducting Materials” was returned to Pauling on December 7, 1990, with requests from the Examiner to make some changes. The deadline to return the application was tight but Pauling complied, submitting his changes on December 12.

Finally, on October 27, 1992, the group’s four years of work came to fruition in the form of a patent. The “Method of Drawing Dissolved Superconductor,” Patent No. 5, 158, 588, was a continuation of application serial number 7/366, 574, which was filed on June 15, 1989. The June 1989 application was, in turn, a continuation of the initial patent application number 7/200, 994, filed May 31, 1988.

In the abstract for the “Method of Drawing Dissolved Superconductor,” it is stated that “a preform for drawing superconducting wire is prepared by mixing fine particles of a superconducting material, containing barium, potassium, bismuth and oxygen, with a solvent, containing potassium hydroxide, in a tube.” After the preform is heated and drawn, the superconductive material dissolves in the solvent, and deposits from the solution as “a solid network of crystals in contact with one another.”

The final patent included basically all of the components of the previous patent applications. The invention provided “a technique for increasing the critical temperature, critical magnetic field, and maximum current density of any of a range of already known superconducting materials.” As in descriptions of the invention submitted with previous patent applications, the structure was the same: superconducting material in the form of fine strands was embedded in a “wave-guiding matrix” which was to be made of some non-conductive material.

In its “Overview” section, the patent states that the superconducting strands within the matrix are generally round and that optimum strand diameters should lie in the range of 50-2000 angstroms. Various techniques are provided – using one method, a composite billet could be formed of bars of the superconducting material surrounded by bars of the matrix material and then stretched until the desired diameter was reached.

Figure 2 from Pauling's superconductivity patent.

Figure 2 from Pauling’s superconductivity patent.

A different method entailed the use of a porous matrix, such as an artificial zeolite or an aluminosilicate, the pores of which are filled with the superconducting material. This done, the entire ingot could be stretched to reduce the diameter of and align the superconducting strands. Another aspect of the invention proposed that strands of a crest superconductor and strands of a trough superconductor could be “alternating and insulated from one another in the matrix.” The relative amounts of the two superconductors would minimize phonon interaction.


“Method of Drawing Dissolved Superconductor” was one of the last inventions that Pauling patented and among the last lines of research that he pursued after a lifetime of scientific accomplishment. Steve Lawson, one of Pauling’s associates on the project, noted in an August 2011 interview that Pauling’s goal in pursuing the superconductor patent was to raise money for the Linus Pauling Institute of Science and Medicine. By the time that his superconductor invention was patented, Pauling was in his early nineties and not interested in adding to his personal wealth; rather, he hoped instead to help stabilize the Institute’s chronically shaky finances.

After Pauling’s death in August 1994, the project fell into neglect, primarily because stable funding could not be secured. However, superconductors continue to be important today in a wide range of uses, including Magnetic Resonance Imaging machines, maglev (“magnetic levitation”) trains and electric generators.

Further research in the field of superconductivity is likely to continue to flourish for a number of reasons.  Clearly the commercial application of higher temperature superconductors is a primary motivation. Likewise, according to the authors of 100 Years of Superconductivity, published in 2012, “establishing the range of existence of superconductivity among material types is obviously an important scientific question, and this purely scientific motivation drives the search for new superconductors to this day.” The book also states that there is no known reason why much higher temperatures of superconductivity should not exist.

It would stand to reason then that the scientific community will continue to explore temperature and material limitations as time goes on, continuing a course of research that included Linus Pauling in its beginnings.

[Ed Note: This is our final post for the year.  Thanks for reading and we’ll see you in 2013!]

Pauling’s Superconductivity Patent

Linus Pauling, 1988.

Linus Pauling, 1988.

[Part 2 of 3]

Until the late 1980s, the generally accepted theory of electric superconductivity of metals was based on an understanding of the interaction between conduction electrons and electrons in crystals. The critical temperature of superconductivity was thought to be below about 23 degrees Kelvin (roughly -418 degrees Fahrenheit), but in the late 1980s, it was discovered that superconductors could have critical temperatures above 100 degrees K, which threw the theoretical understanding of the subject into confusion and controversy. The discovery also spurred an effort to find new materials with an even higher Tc, or temperature of superconductivity; perhaps as high as room temperature.

The process of developing a superconducting product that Linus Pauling and his associates thought might be viable took several months and much collaboration, beginning in early 1988. Along with Pauling, other members of the Linus Pauling Institute of Science and Medicine, including Zelek Herman, Emile Zuckerkandl, Ewan Cameron and Stephen Lawson, worked on the project. When the researchers finished the task, Pauling was ecstatic and invited Herman and Lawson to his home, giving them large mineral crystals as gifts and offering to inscribe their copies of General Chemistry to commemorate the occasion.

Their invention aimed to form a composite structure in which superconducting materials assumed the form of fine strands embedded in a wave-guiding matrix. The matrix restricted the superconducting current to a linear motion; however, the strands did not need to be straight, but could also be bent or interconnected into a network. This matrix would be built of a non-conducting material such as glass.

Pauling notes on superconductivity, 1988.

Once the superconducting material was mounted with the help of the matrix material, the entire set-up was stretched to minimize the diameter of the superconductive strands, in the process maximizing the critical temperature. Optimum strand diameters were thought to lie in the range of 50-2000 angstroms – a unit of measure that is one-ten billionth of a meter and is denoted by the symbol Å. For its part, the matrix material needed to be easily drawn into fine strands and not be superconducting. Pauling believed that

by selecting the best superconducting and matrix materials and the optimum strand diameter, it should be possible to obtain a composite superconductor with critical temperature above room temperature, critical magnetic field above 100 tesla, and critical current density above 108 amperes per square centimeter.

In the group’s patent description, a few variations on this technique were listed that were thought to increase its effectiveness.  One variation involved the embedding of two types of superconducting materials into the matrix instead of one. A suitable composite structure of this type could include strands of lanthanum and tin embedded in glass with a softening temperature of about 950˚C.

The description also noted a couple of different ways that the matrix material and superconducting material could be joined together. In one variation, the matrix was constructed as a tube and the superconducting material poured in and afterwards “drawn,” or stretched. Then several of these tubes containing superconducting material were joined together and stretched simultaneously, over and over, the same way Italian millefiori glass beads are made. Another variation utilized the filling of a porous matrix with a liquefied superconductor, whereupon the whole apparatus was heated and stretched.

The group admitted to problems with these methods, but Pauling thought up solutions. One obstacle was that the melting point of glass might be lower than that of the superconducting material, which would make it impractical to draw glass or other material with the superconductor. Pauling’s method of solving this problem was to add a powder made up of the superconducting material to the glass in order to reinforce it.

Despite all the work that Pauling and other scientists were accomplishing, a New York Times article published October 16, 1988, declared that the U.S. was falling behind Japan in the race to commercialize superconductors. The author predicted that “major uses of the new materials are considered to be at least ten years away” but that “scientists envision superconductors that could eventually be used to make computers that operate at blazing speeds, highly efficient electric generators and transmission lines, and high-speed trains that would be suspended above their tracks by superconducting magnets.”

The article continued that the new superconductors could conduct electricity at temperatures as high as -235 degrees Fahrenheit, whereas previously it had been thought that superconductivity could occur only at about -420 degrees Fahrenheit. The new temperature, the article concluded, would be much easier to achieve in laboratories.

Pauling notes on superconductivity, January 1989.

Richard Hicks, Vice President of LPISM at the time, wanted to license Pauling’s invention, “Technique for Increasing the Critical Temperature of Superconducting Materials,” to U.S. companies, but was met with little positive feedback. As such, he instead attempted to license the invention to Japanese companies after hearing that Japan was also interested in the commercialization of superconductors. No Japanese companies showed interest either, but the CIA did come calling to ask why the Institute wanted to license a patent to Japan. Over the course of their interview, the CIA representative showed extensive knowledge and interest in the project. In explaining the Institute’s position, Steve Lawson clarified that no American companies had been interested in the purchase, so LPISM was compelled to look to other countries.

In 1988, the same year that the LPISM research group had begun work on the high-temperature superconductor, Pauling, Hicks and Zuckerkandl set up the Superbio Corporation to administer the business side of the invention. Initially Pauling assumed the role of Chairman of Superbio and Richard Hicks was President. Pauling believed it would be successful and invested in the company, owning 300,000 shares in Superbio, Inc. by the end of August. On August 12, 1988, Superbio entered into discussions with the Du Pont Company, which wanted to evaluate Superbio’s information on superconductivity with a view to “possible business activity.” In turn, Du Pont Co. was sworn to secrecy regarding Superbio’s research.

Rick Hicks and Linus Pauling, 1989.

Rick Hicks and Linus Pauling, 1989.

Not long after, on August 31, 1988, Pauling and IBM drew up a draft agreement in which IBM agreed to purchase the patents and/or patent applications for high temperature superconductivity from Pauling for the sum of $10,000. The document described Pauling’s invention in detail, stating that it “provides a technique for increasing the critical temperature, critical magnetic field, and maximum current density” of superconducting materials. In addition, IBM was to pay Pauling “a royalty of five percent of the manufacturing cost of the patented portion of any apparatus made.” The patent would become fully paid when IBM had compensated Pauling to the tune of $2 million.

In early 1989, Superconductor News affirmed the fears voiced by the New York Times in October 1988 that the U.S. was falling behind Japan in the race to commercialize superconductors. Their January/February issue included a report on presentations given by the United States Superconductor Applications Association (the SCAA), which included Japanese developments in “SC power transmission, SC magnetic energy storage, SC generators, SC electromagnetic ships, SC electronics and computers, and the SC linear motor car (maglev).” Superconductor News also discussed the possibility of impending confirmation of superconductive materials that could operate at room temperature (Ambient Temperature Superconductors, or ASCs). Potential uses for room temperature avionics applications were listed as thermoelectricity, solid state synchron sources for x-ray lithography, and applications for earth and planetary sciences, medicine, biology, and physical sciences with Extra Low Frequency (ELF) magnetometry.

In response, the Exploratory Research and Development Center in Los Alamos, New Mexico, was set up to boost the U.S.’s superconductivity research infrastructure. The Center was interested in collaborating with Pauling after he sent them a letter in July 1989 in which he mentioned his patent application on high-temperature superconductivity, which by that point had been turned over to Superbio. Pauling’s faith in the company was evident – by the end of November 1990, he owned 900,000 shares of common stock with Superbio. Bolstered by the seeming momentum of Superbio, the interest of other companies in Pauling’s superconductivity invention, and a patent in the works, the future for this work looked promising.

Raising the Temperature: Pauling and Superconductivity

Zelek Herman, 1991.

Zelek Herman, 1991.

[Part 1 of 3]

I believe that a discovery that I have made may make room-temperature superconductivity a reality.

-Linus Pauling, June 1990

In the late 1980s, as Linus Pauling neared his ninetieth birthday, he became interested in a new and exciting scientific endeavor: high-temperature superconductivity. While most of the field’s researchers at that time were focusing on the use of ceramics to promote superconductivity, Pauling decided to focus more on techniques for raising the temperature at which materials became superconducting in order to facilitate their usage in industrial and research settings. High-temperature superconductivity, or high-Tc, was a technique discovered in 1986, so in early 1988, when Pauling took up the topic, the field was still wide open to exploration.

So what is high-temperature superconductivity? According to a 1988 business agreement drawn up between Pauling and IBM, the definition of a “superconducting product” is “any product which contains any material which loses substantially all electrical resistance below a transition temperature above 77 degrees Kelvin.” Basically, according to this description, a superconductor is a substance that loses electrical resistance when heated to a point between 77 degrees Kelvin and some higher temperature.

(It is important to note that the high temperatures being discussed in the context of superconductivity are actually quite cold: 77 degrees Kelvin translates to -196 degrees Celsius. Superconductivity has traditionally been observed at temperatures near absolute zero; achieving it at something near room temperature would constitute a major scientific breakthrough.)

Pauling’s first step in exploring specifically high-temperature superconductors was to contact Dr. Zelek Herman, a biochemistry professor at Stanford and close colleague of Pauling’s at the Linus Pauling Institute of Science and Medicine (LPISM). Pauling’s somewhat unusual request was that Herman create a few color slides for him of the cover of American Scientist. The particular issue that he wanted depicted the structure of a high-temperature superconductor.

A month later, Pauling wrote to Herman again, this time about the possibility of obtaining a Naval Research grant to fund an investigation of the “resonating valence bond theory of superconductivity.” In developing the proposal, Pauling emphasized the importance of both fluxon theory and a method of calculating interaction with phonons by using the relation between bond length and bond number.  The latter method had been formulated by Pauling in 1947.

Pauling notes on superconductivity, February 1988.

According to Pauling, an idea for creating a superconductor occurred to him while he was thinking one day about how Damascus steel was made for swords in the Middle Ages. The exact process by which Damascus steel was originally fabricated is unknown, but one way of reproducing it is through billet welding, where layers of steel are folded over and over and then stretched until a desired thickness is reached.

In February 1988, Pauling decided to apply this method to the building of a superconductor, using lead and a malleable plastic. The idea was to see if he and his associates could get the lead thin enough to become superconducting. Pauling named his idea, “A method of fabricating a composite containing filaments of a superconducting material with diameter and cross-sectional shape such as to confer on the material improved properties, such as increase in the characteristic superconducting temperature.”

Pauling believed his superconductor would work because of a process of phonon dampening, which consisted of taking a conductive metal such as tin, drawing it to a very fine diameter, specifically 10-20 angstroms (one angstrom is equivalent to one-ten billionth of a meter) then insulating the metal with non-conductive material, such as glass. Doing so would raise the superconductive temperature, or Tc, of the metal. Pauling worked on the project together with LPISM associates at a facility that the Institute leased at the Stanford Industrial Park in Palo Alto, California.

As the work progressed, Zelek Herman developed a creative way of collecting material for the superconductor.  His method called for inverting a bicycle, taking the tire off of one wheel, setting the wheel on a block of wood, heating a tin fiber above a furnace with torches, turning the wheel using the bicycle’s pedals, and collecting a thin strand of material on the rim of the wheel. Pauling was very engaged in the process and would occasionally drop by to assist in the experimentation, sometimes by wielding the torch used in stretching the borosilicated tin while standing over an 800-degree furnace.

Many pages in Pauling’s research notebook from that time show that he was likewise researching and working on calculations related to superconductors. The calculations first start to appear in February 1988 and, by Spring, he believed he had enough material to patent his idea. He filed a patent application for his “Technique for Increasing the Critical Temperature of Superconducting Materials” on May 31, 1988.

A New and Improved Cavity Charge Projectile

Notes on explosives, October 2, 1942.

Major Ross, patent attorney for the Navy…said that perhaps I didn’t know that I was co-inventor in this invention – I do not remember having been told that I was. The invention is on an offset liner for cavity charge.

-Linus Pauling, February 8, 1952.

In February 1952, Linus Pauling was summoned by K.F. Ross, patent attorney for the Navy, to sign an oath and patent application form. The document was titled “Oath, Power of Attorney, and Petition,” and stated that Pauling and Martin A. Paul were the joint inventors of “An Offset Liner for a Cavity Charge Projectile.” Paul had already signed the same application on January 17, 1952. The document also stated that D.C. Snyder and K.W. Wonnell, attorneys affiliated with the Office of Naval Research, would manage the patent application.

When the inventors signed the patent application form, they also agreed to sell their invention to the Navy, which bought the patent from them for the sum of one dollar. It was furthermore stated that

The said Owners hereby agree to execute and deliver unto the Government, upon request, any and all instruments necessary to convey to the Government the full right, title, and interest in and to any substitutions, divisions, or continuations in part of said application.

In this way, Pauling simultaneously claimed inventorship and signed away ownership, as well as any other claims to the invention, with one stroke of his pen.


As a war-time scientist, Pauling was often called upon by the U.S. government to aid in the defense and protection of the country. During World War II he worked on projects as diverse as an oxygen meter and a human blood substitute. The offset liner for a cavity charge projectile, which Pauling worked on with Martin Paul, was one such project. The timing of the application, coupled with the absence of the cavity charge projectile from Pauling’s research notebooks, suggest that this was another of Pauling’s war work projects, but one that remained top secret until after the war.

The problem that the researchers endeavored to solve was the stabilization of gun-ejected explosive shells. The contemporary method of stabilization upon which Pauling and Paul were charged to improve was to spin the shells as they were ejected, which was not very efficient. For one, spinning the shells resulted in a fifty percent decrease in the force that the shells could deliver upon impact, as compared to a shell that does not spin. Working together, Pauling and Paul found a creative way to provide stabilization without lessening the impact that the shells could make on their targets.

Diagrams included with Pauling and Paul’s cavity charge projectile patent, November 1965.

The primary object of their project was to improve the penetrating power of a spin-stabilized, cavity charge explosive shell by inventing an improved cavity-charge shell. A cavity-charge shell includes a space around which the explosive is arranged, so that when the explosive detonates, the shaped cavity focuses and increases the detonation, thereby requiring a smaller amount of explosive to deliver a comparable amount of force.

One tactic used by Pauling and Paul in pursuit of increased efficiency was to change the shape of the cavity’s liner. The new and improved model of a cavity-charge projectile utilized a plurality of offset plane sectors which faced in the direction of the shell’s rotation, ostensibly causing the shell to be slowed less by spinning.

Further, in Pauling and Paul’s model, the liner for a cavity-charge projectile was constructed by dividing the conical surface of the cavity into sectors, and tilting each sector slightly towards the preceding sector. According to the duo’s patent, “45 degree steel cones of .062 inch thickness and sectioned in half and in quarters were respectively put together again with silver solder in such a way that adjoining edges were offset with respect to each other.” Upon impact, the force exerted by the explosive in the shell on these sectors would compensate for the slowing of forward motion caused by spin.

Pauling and Paul had been constructing cavity liners by dividing a conical surface into four separate sections which were then twisted or canted relative to each other. But the patent states that a die could be constructed which would enable the structure to be made in a single stamping. As to the efficiency of the offset cavity liner, “It can be seen that for speeds of rotation above about 130 r.p.m., the modified cones were far superior to the unmodified cones.”

Diagrams included with Pauling and Paul’s cavity charge projectile patent, November 1965.

Several variations in the invention emerged with slightly different cavity shapes and other modifications, but the patent concludes that the various versions of the invention all had key features in common. For one, all of them required the offset surface to face the direction of rotation of the shell. Likewise, they required “that there be a plurality of offset sectors where the amount of offset increases from apex to the base of the shell head portion.”

Pauling and Paul’s joint invention, “An Offset Liner for a Cavity Charge Projectile,” U.S. patent number 3, 217, 650, was patented on November 16, 1965, thirteen years after the original application was filed.

The Fate of Oxypolygelatin

An original container of 5% Oxypolygelatin in normal saline. 1940s.

During World War II, Linus Pauling, along with Dan H. Campbell and Joseph B. Koepfli, created a blood plasma substitute which they dubbed “oxypolygelatin.” This new compound seemed to be an acceptable substitute for human blood, but needed more testing to be approved by the Plasma Substitute Committee. Unfortunately when Pauling asked for additional funds to carry out more testing in 1945, he was denied by the Committee on Medical Research, which had been funding research up until that point.

By the time Pauling received more funding the war had almost come to a close, and it ended before oxypolygelatin got off the ground as an acceptable blood substitute. Likewise, the need for artificial blood was less pressing after the conclusion of the war. More information on the creation and manufacture of oxypolygelatin can be found in our blog posts “Blood and War: The Development of Oxypolygelatin, Part 1,” and “Pauling on the Homefront: The Development of Oxypolygelatin, Part 2.” Today’s post will focus on the patenting, ownership and uses of oxypolygelatin after World War II.

Pauling seemingly gave up on the project after 1946, mostly because widespread blood drives organized by the Red Cross and other organizations lessened the demand for artificial blood. In 1946 Pauling, Campbell and Koepfli decided to file for a patent on oxypolygelatin and its manufacturing process, which they then transferred to the California Institute Research Foundation with the stipulation that one of the inventors would be consulted before entering into any license agreement. They also noted that the Institute should collect reasonable royalties for the use of the invention, but only so much as was needed to protect the integrity of the invention.

The “Blood Substitute and Method of Manufacture” patent was filed December 4, 1946, and the Trustees of the Institute agreed to take on ownership of oxypolygelatin and the patent application in early 1947.

Notes by Linus Pauling on a method for producing oxypolygelatin. July 23, 1943.

Although it would appear that Pauling gave up on the oxypolygelatin project with the transfer of ownership, he still pushed for its manufacture years later. In October 1951, he wrote to Dr. I. S. Ravdin of the Department of Surgery at the University of Pennsylvania Medical School to inform him that oxypolygelatin was not being considered seriously enough by the medical world as a blood substitute.

Pauling insisted, “…that it is my own opinion that Oxypolygelatin is superior to any other plasma extender now known.” He likewise noted that it was the only plasma extender to which the government possessed an irrevocable, royalty-free license, so he could not understand why it was not being stockpiled and utilized.

As far as Pauling knew, only Don Baxter, Inc., of Glendale, California, was manufacturing oxypolygelatin. At this point the rights to oxypolygelatin were owned by the California Institute Research Foundation, not Pauling, and the Institute was not authorized to make a profit from it. Consequently, Pauling’s insistence on the production and usage of his invention can only be explained by a concern for humanity, coupled perhaps with an urge to see the compound succeed on a grander scale.

Later in 1951, Pauling continued to push for the usage of his invention, arguing in a February letter to Dr. E.C. Kleiderer that oxypolygelatin was superior to the plasma substitutes periston and dextran. In Pauling’s opinion “the fate of periston and dextran in the human body is uncertain…these substances may produce serious injuries to the organs, sometime after their injection.”

Oxypolygelatin, on the other hand, was rapidly hydrolyzed into the bloodstream and would not cause long-term damage. It was also a liquid at room temperature, unlike other gelatins, and was sterilized with hydrogen peroxide to kill any pyrogens (fever-inducing substances) while many other gelatin preparations failed because of pyrogenicity. One of the only problems with oxypolygelatin was that the chemical action of glyoxal and hydrogen peroxide could potentially produce undesirable materials, but the matter could be cleared up with further investigation.

It appears that Pauling’s interactions with Ravdin and Kleiderer did not result in the mass manufacture or marketing success of oxypolygelatin, but this did not deter Pauling from pursuing the matter many years later. In 1974, after visiting Dr. Ma Hai-teh in Peking, China, he sent Ma his published paper on oxypolygelatin, and discussed the possible production of the substance in China. He wrote to Ma, “I hope that you can interest the biochemists and pharmacologists in investigating Oxypolygelatin. I may point out that no special apparatus or equipment is needed.”

In reply, Ma expressed interest in oxypolygelatin and said that he had passed Pauling’s paper on to a group of biochemists, but that he was personally more interested in Pauling’s work on vitamin C. The rest of their correspondence focused primarily on the benefits of vitamin C, especially in the treatment of psoriasis.

In a 1991 interview with Thomas Hager, author of the Pauling biography Force of Nature, Pauling claimed, “I patented, with a couple of other people in the laboratory, the oxypolygelatin. I don’t remember when I had the idea of making oxypolygelatin. Perhaps in 1940 or thereabouts.” He added that it was not approved by the Plasma Substitute Committee, so it was not usable for humans, but was manufactured instead for veterinary use.

At the time of the interview, Pauling believed that oxypolygelatin was still being manufactured in some places, but was unsure of the details since there were many rumors floating around. According to him, the Committee on Plasma Substitutes did not approve his oxypolygelatin because it wasn’t homogenous; meaning that, on the molecular level, it included a range of weights. Pauling, however, believed that the range in molecular weights should not matter, since naturally occurring blood plasma includes serum albumin and serum globulin, whose molecular weights fall in a wide range anyway.

Joseph Koepfli

In 1992 Hager also interviewed Joseph Koepfli, one of the co-inventors of oxypolygelatin. Koepfli claimed that oxypolygelatin was at one time used by motorcycle officers around L.A. because they were the first to the scene of accidents. He also remembered that, in the early 1980s, Pauling had told him that oxypolygelatin was used for years in North Korea, but that no one was ever paid any royalties.

These and a few other rumors about oxypolygelatin circulated, but evaluating their worth is virtually impossible due to the secrecy surrounding wartime scientific work, as well as the scarcity and ambiguity of the surviving documentation. Judging from Pauling’s opinions though, what can be said is that perhaps if it had been pursued more vigorously, oxypolygelatin could have benefited the war effort and proven successful on a commercial level.

The Propellant and Burning Method

Notes re: high explosives and propellants. October 2, 1942.

We’ve discussed in the past the story of how the National Defense Research Committee was created by President Franklin Roosevelt in the summer of 1940, how Pauling joined in September of that year, and how he was assigned to work on hyper-velocity guns along with a group of other scientists. The committee Pauling belonged to was specifically charged with creating a high-performance propellant to use in hyper-velocity guns, and came up with experimental methods for studying powder combustion.

In 1943 Pauling began investigating a powder that resisted the destabilization to which contemporary powders were prone. He discovered that dinitrodiphenylamine was a more effective stabilizer than any other product used at the time. Pauling’s research team engineered several new powders, and his discovery led to a universal changeover from diphenylamine to dinitrodiphenylamine as the new compound was far safer to work with in industrial settings.

Adding to our previous writings on this subject, today’s post will focus specifically on the process of patenting Pauling’s “Propellant, and Method of Controlling the Burning Thereof,” filed June 18, 1945.

Because the research that Pauling and his team were conducting was directly related to the war, a secrecy order was issued by the Commissioner of Patents on Pauling’s application. As a result, certain documents related to the invention appear to have been either embargoed or destroyed, and some information on the subject has been lost.


Pauling’s NDRC authorization papers permitting work on explosives in warfare. May 1, 1944.

I patented, during the war, a class of composite explosives – propellants. And it may be that they are used, to some extent, now. I never got any royalties from that, because the government had an irrevocable royalty-free license, and nobody else was interested in the powder for propelling bazookas and things like that.

So said Linus Pauling in an August 1991 interview with Thomas Hager, author of the Pauling biography, Force of Nature. However, documents held in the Pauling Papers indicate some discrepancy from Pauling’s recollections.  On May 15, 1945, Pauling wrote a statement in which he agreed to assign to the California Institute Research Foundation his entire right, title and interest in the “Propellant and Method of Controlling the Burning Thereof,” OEMsr 881 Pat 1, along with any patent which the Foundation might file, as long as Pauling received a quarterly payment of 15% of the income from the invention. However, as Pauling stated in his interview with Hager, he never received royalties from his propellant invention, so either the California Institute Research Foundation never patented Pauling’s invention, or there was never any income.

Pauling’s patent attorneys, Lyon and Lyon, wrote a letter to the Commissioner of Patents in November of 1948 “in response to the Office Action of June 8, 1948,” in order to amend a patent application, and included a “remarks” section in which they listed all of the unique aspects of Pauling’s rocket propellant. According to them, “The only reference [in Pauling’s amendment] which is directed to a rocket or rocket propellant, is the British reference Piestrak.” (Piestrak was a scientist.) Lyon and Lyon continued, “It is inherently impossible for the propellant shown in this reference to function in the manner of applicant’s propellant…” In other words, Pauling’s propellant was different enough to where it would be impossible for Piestrak’s invention to replicate it.

Lyon and Lyon went on to list all of the different ways in which Pauling’s propellant was unique. According to them, only if the propellant shown by Piestrak were “arranged to burn from one end only and the central or (33) was filled with a propellant” and if the “slow burning cylindrical layers (34) were changed to fast burning cylindrical layers,” then the Piestrak propellant would be similar to Pauling’s. Further, in Piestrak’s invention, one cylindrical portion of the propellant would burn completely before the next one in order to create “spaced impulses,” while in Pauling’s, the portions were all fast-burning.

Next, they compared Pauling’s invention to an that patented by an individual named Maxim. Maxim’s invention “consists in providing in an explosive colloid, throughout its structure, uniformly arranged cells. These cells are shown in his preferred form as being voids.” The voids could also be filled with a fast burning powder, in order to expand the flame rapidly to the walls of the cells. However, Maxim’s methods did not apply to Pauling’s invention because Pauling’s product would be utilized in the confined space of a high-velocity gun.

The Maxim patent was issued in 1896, and was not meant for use in the same conditions as Pauling’s. Furthermore, Maxim’s powder could only function like Pauling’s on occasion and seemingly by accident. Likewise, Maxim’s black powder would not burn at the same rate as Pauling’s product, according to the attorneys.

Lyon and Lyon finished their letter to the Commissioner of Patents requesting favorable reconsideration of the application, which indicates that, in 1948, Pauling was still working on obtaining a patent for his rocket propellant.

Memo from Pauling to Lyon & Lyon, March 22, 1951.

Some three years later, on March 22, 1951, Pauling wrote a memo to Lyon and Lyon titled “Patent application on explosives.” In it, he compared his product to other inventions. According to Pauling, “In our case we are interested in controlling the burning rate – in conferring upon the major propellant material a burning rate other than that characteristic of it.” Pauling added that he was interested in controlling the burning rate by controlling strands, or by other special methods of manufacture of the propellant. He mentioned that another researcher named De Ganahl was not able to control the burning rate of his own propellant.

On March 7, 1952, Pauling received a letter from J.P. Youtz, business manager of the California Institute Research Foundation, informing him that the application serial no. 600,043, (Pauling’s rocket propellants patent) which had been pending in the Patent Office, had finally been rejected by the Examiner “in spite of the fact that there is more evidence to indicate your invention is patentable over the references cited.” April 12 was the deadline for an appeal.

From there, it is unclear as to whether or not Pauling’s claim to a unique rocket propellant and method of burning were ever acted upon. It is possible that the process was patented by Pauling and then passed on to the California Institute Research Foundation or the government. It is also possible that it was passed along to one of these entities and patented later. Or maybe it was not patented at all, and Pauling’s statement in 1991 was the result of a long, complicated legal process carried out during wartime and clouded by secrecy.

In any case, Pauling’s new method of creating rocket propellants and controlling their burning, and particularly his discovery of the stabilizing effects of dinitrodiphenylamine, resulted in an important contribution to safer working practices in the explosives manufacturing industry.

Patenting the Pauling Oxygen Meter

Series of diagrams of the Pauling Oxygen Meter. June 8, 1942.

The story of how Linus Pauling’s Oxygen Meter came into being has already been well documented on this blog.  In our previous discussion we outlined the workings of the oxygen meter itself, the improvements that were made, and the fate of the invention in the aftermath of World War II. Today’s post will add to that story by focusing on the uniqueness of Pauling’s invention and the means by which the Oxygen Meter came to be patented.

On October 7, 1940, a contract was drawn up between Caltech and the National Defense Research Committee (NDRC) for the development of the instrument. In a letter addressed to the NDRC, Pauling stated that, in view of the circumstances, and because his desire was to be of service to the country, he was willing to grant the government a non-exclusive, royalty-free license covering the entire invention throughout “the period of national emergency,” referring to World War II. He also expressed his desire that the National Defense Research Committee decide who would be given the rights to the apparatus at the end of the war.

Pauling wanted to file an application for a patent on his invention “inasmuch as it seems it will be of use in various fields other than that of national defense” – a correct supposition as it turned out. At the end of the letter, he commented that he wished to “proceed with the greatest speed in developing the instrument to the point of maximum usefulness in national defense.”

Irvin Stewart, secretary of the NDRC, wrote back and essentially told Pauling that, according to the patent clause, because he had created the invention after signing a contract with the Committee, the government was entitled to a royalty free license on the invention not only during the war, but throughout the life of the patent.

In a letter to Dr. James B. Conant of the NDRC, written February 15, 1941, Pauling next expressed a desire to patent the fundamental idea of his oxygen meter, “now that my oxygen meter will soon be put in use in other laboratories,” rather than the actual device itself. He mentioned the contract agreed to by the NDRC and Caltech, which stated that the Committee would have the sole power to determine whether or not a patent application should be filed. He also noted that “there are many uses to which the instrument might be adapted other than the original one.”

Pauling received an answer from Irvin Stewart on March 28, 1941, in which Stewart advised Pauling to apply for a patent on all of his developments that antedated the contract between the Committee and Caltech. Pauling replied that it was only after attending a meeting of the National Defense Committee in Washington, D.C. on October 3, 1940, that he initially learned of the need for an oxygen meter, and it was from this meeting that his ideas stemmed.  Pauling’s desire to patent his idea was running into roadblocks, but the uniqueness of what he had devised could not be denied.


The Pauling Oxygen Meter. approx. 1940.

Pauling’s “Apparatus for determining partial pressure of oxygen in a mixture of gases” was unique for many reasons. For starters, it was both light-weight and tough. It also made use of the fact that oxygen is a strongly paramagnetic gas, which means that its magnetism does not become apparent until it is in the presence of an externally applied magnetic field. Only a few gases other than oxygen are paramagnetic, but they are less susceptible to magnetism than is oxygen. For this reason, the apparatus was valuable in determining the oxygen content of a mixture of gases, except where other paramagnetic gases such as nitric oxide, nitrogen dioxide, and chlorine dioxide were present.

Because Pauling’s device was going to be used in war, the government wanted to limit the number of people who knew of its existence. The NDRC eventually granted permission for Pauling to reveal the nature of his invention to his patent attorney in Los Angeles, provided that he did not disclose the nature of the invention to anyone else. When Mr. Richard Lyon, of Lyon and Lyon, Attorneys, requested information on the assembly of Pauling’s invention in order to better research existing inventions like it, Pauling asked Dr. Reuben E. Wood, who worked on the device with Pauling, to fill in the attorney. It is from this exchange that we learn a bit more about what made the device special.

Wood told Lyons that Pauling’s device was novel in many ways. For one, Wood could not find any other reference to the use of the magnetic susceptibility of oxygen as a means of analyzing a mixture for it.  Also unique to the Pauling method were the facts that the composition of the gas sample was not altered by analysis, and that “the moving part of the device is actuated directly by the presence of the gas in the analyzing chamber.”

A similar apparatus, designed by Glenn G. Havens, had a recovery time of three minutes after being jarred or after a gas sample reading before it could be used again, while Pauling’s only needed one second. Another major difference between the two devices was that Pauling’s was portable while Havens’ was immobile and fragile.

Furthermore, Pauling’s model utilized a permanent magnet instead of an electromagnet, which meant that his magnet weighed less. Also, no source of electricity was required for the instrument to work except that required to operate a light bulb, which could be powered using a flashlight cell. All in all, Pauling’s model was more efficient, portable and dynamic than any competing instrument. Wood believed that all of these unique attributes were patentable.

Pauling filed a patent application on August 23, 1941. Having done so, he was promptly informed by the Department of Commerce of the United States Patent Office that the contents of his application “might be detrimental to the public safety of defense,” and was warned by the government to “in nowise publish or disclose the invention or any hitherto unpublished details of the disclosure of said application, but to keep the same secret.”

Later, Pauling discussed with the Office of Scientific Research and Development the procedure for obtaining a suitable manufacturer to produce his invention. The parties involved ultimately decided on Dr. Arnold O. Beckman and his organization as the likely purveyors, as they were familiar with instrument production problems through their experience in manufacturing parts for this and other technical equipment for laboratory use.

Reuben E. Wood. March 1948.

Dr. Wood, who had worked on the oxygen meter with Pauling, was also interested in patenting certain features which he had developed, so he wrote to the NDRC for permission to apply for a patent in March 1942. Important aspects which he improved upon were a “method of balancing the test body;” an improvement “which reduces the effect of temperature changes in the indication of the meter;” and “a method of selecting range of maximum sensitivity.” He later wrote to Richard Lyon enclosing four Records of Invention statements detailing his improvements on the Pauling Oxygen Meter.

However, in a letter to Captain Robert A. Lavender of the Office of Scientific Research and Development, Pauling communicated that it was not the intention of the California Institute Research Foundation to apply for patents on the inventions of Dr. J. H. Sturdivant and Dr. Reuben E. Wood. As concerned the Oxygen Meter patent, Wood was left out in the cold.


In March 1944 the Naval Research Laboratory of Washington, D.C., sent a confidential statement to the Chief of the Bureau of Ships in which it was stated that

this Laboratory has been interested in the development of an oxygen indicator suitable for service on submarines. The most satisfactory instrument has appeared to be the Pauling Oxygen Meter and a detailed study has been made of its operating characteristics, ruggedness, dependability and general efficiency with very promising results.

The letter also noted that the Pauling Oxygen Meter was found to be superior to a similar instrument – namely, the one created by Havens.  The efficacy of Pauling’s invention was becoming manifest.  As he himself had predicted, the device would be of use for both the war effort and in peace time.

Finally, after much brainstorming and years of collaboration, hard work and improvement, and after having been proven exceedingly useful during World War II, Pauling’s Oxygen Meter was patented on February 25, 1947, some five and a half years after the initial application was submitted.