General Chemistry: Reactions to the First Edition

gen-chem-graph

[An examination of General Chemistry, published by Linus Pauling seventy years ago. This is part 3 of 7.]

The first edition of Linus Pauling’s General Chemistry textbook was published by W.H. Freeman and Co. in August 1947, and almost immediately the comment cards poured in. The majority of the book’s readers praised Pauling’s refreshingly modern approach to the principles of chemistry. They considered his focus on modern chemical principles, with only brief and necessary digressions into historical background, a welcome innovation in textbook design.

Many also were also impressed by Pauling’s clear and direct approach to his subject matter, with one reviewer commenting that

[Pauling’s book] is written in a way which should appeal to the imaginations of those who happen to possess them, which is perhaps as important as anything that can be done.

Reviewers were likewise nearly unanimous in their enthusiasm for Roger Hayward’s skillful illustrations, pointing out the degree to which his depictions were a truly extraordinary asset, especially for concepts known to be sources of difficulty for students.


gen-chem-review1.jpg

That is not to suggest, however, that the first edition was uniformly accepted as flawless. Indeed, over half of Pauling’s reviewers declared the book to be too advanced for it’s announced audience: first year students. Moreover, many also noted that the book actually discouraged all but their most determined introductory pupils from moving forward because of the difficulties that they encountered with some of the fundamental principles that Pauling laid out.

Many of the professors who found the text to be too challenging believed that Pauling had mistakenly used Caltech as the standard by which to measure all incoming college freshman. But while their opinion that Pauling had miscalculated in this regard was fairly consistent, the collective did not provide a consensus on who might be an appropriate target audience for the book; reviewers’ suggestions ranged from advanced freshmen to pre-professional students.

In fact, Pauling did have Caltech freshmen in mind when he wrote the book, and very intentionally so. When he embarked upon the project, he made clear that his primary ambition was to develop a text that would prove useful to students who shared his own early enthusiasm for chemistry and who were prepared to devote their academic careers – and, ideally, their professional careers – to the study of chemistry. In the eyes of many though, this approach was not appropriate to other institutions of higher learning and the question of ideal audience remained a point of contention for the entire life of the book.


gen-chem-review2

Several professors who argued in support of the text tended to feel that its advanced nature was actually the best possible asset that could be provided to specific cohorts of students: in particular, students blessed with sufficient high school experience and/or interest, as well as students who made up for their lack of experience with enthusiasm and perseverance. A few years after Pauling first published his book, a California professor commented that, in his higher-level class, students using General Chemistry applied essential material more effectively and achieved higher rates of success in upper-division chemistry courses overall.

Other positive reviewers focused more intently on Pauling’s technique and powers of description. Scripps professor Norris Rakestraw called Pauling’s review of molecular structure “one of the best approaches to an understanding of general chemistry” and also agreed with others who claimed that the book had the potential to propel students to a more rigorous level. If perhaps not ideally suited for freshmen, Rakestraw believed that General Chemistry was certainly perfect for a refresher course.

Several others followed suit. A.L. Rathmer suggested that Pauling’s “unorthodox and unconventional” treatment was valuable to teachers and other researchers in the field. A reviewer from Northwestern University phrased a similar sentiment in a decidedly different way:

Any instructor who fails to read this text should be fired – and any instructor who tries to use it with freshman should also be fired.

A smaller group of professors offering mixed reviews pointed out that Pauling’s own research interests – particularly his biochemical interests – seemed to dominate the text. A few went so far as to accuse Pauling of using his book as a platform to advance his own scientific theories. Pauling, who was generally open to feedback, did not respond to these comments except to disclaim them in fragmented notes scribbled in the margins of letters and review cards.


malm-frantz

One oft-issued request that did receive a response from Pauling was that he release an answer key to the book’s exercises. He worked on this key during the summer of 1947 while he was working as a visiting professor at Oxford University, and he enlisted his son, Peter, to work through the problems alongside him, verifying answers and identifying problematic practice questions.

Reacting to a different set of complaints, Bill Freeman suggested that the publishing house also compile and release a laboratory manual that was specifically designed to accompany the text. Settling on a length of 290 pages with 80 Hayward illustrations, Freeman worked with Pauling to select Harper Frantz, a lecturer at Pasadena City College, and Lloyd Malm, a University of Utah chemistry professor, as co-authors. Frantz and Malm in turn developed experiments that were based on and that further amplified the principles described in General Chemistry.


Pauling was not only unconventional in his approach to subject matter, but also in how he used his terminology. Two prominent examples of this tendency were his representation of Avogadro’s number and his use of the term “molality” in the place of “molarity.”

Avogadro’s number defines the units in one mole of a solution and is typically set at approximately 6.022 x 1023. Pauling, however, chose to write the number as 0.6023 x 1024. Even when several colleagues urged him to stick to generally accepted convention, Pauling insisted on representing the number as 0.6023 x 1024 and continued to do so throughout all three editions of General Chemistry. In defending his point of view, Pauling offered this explanation in a footnote:

There is great convenience in learning Avogadro’s number as 0.6023 x 1024. An important use of this number involves the conversion of the volume of a gram-atom of an element into the volume per atom. The first volume is expressed in cm3, and the second in Å3. The relation between cm3 and Å3 involves the factor of 1024 : 1 cm3 = 1024 Å3. Accordingly, in case that Avogadro’s number has been taken as 0.6023 x 1024, there is no trouble whatever in deciding on the position of the decimal point.

In other words, by simplifying Avogadro’s number in an unorthodox way, Pauling was trying to make the concept easier to learn for students.

He defended his choice to use “molality” in a similar fashion, referencing A.A. Noyes, Ernest Swift, and W.C. Bray as among those who used “molality” to refer to moles per liter of solution. Pauling incorrectly believed that the term would eventually prevail within the discipline and therefore felt that students would be well-advised to familiarize themselves with it. Eventually he conceded that his was not destined to be the conventional wisdom and he changed “molal” to “molar” in the second edition.

Indeed, throughout the lifespan of General Chemistry, Pauling trusted that students using the book would come equipped with a firm grasp on the language of chemistry. He did, however, agree to provide more definitions in the second edition, particularly for less common or more advanced terms.


1948i020

Ava Helen and Linus Pauling, 1948.

While there was widespread disagreement about the appropriateness of using Pauling’s book in freshman classes, very few reviewers disputed General Chemistry‘s strength in content. One colleague, J.S. Coles, who later went on to author a textbook of his own, published a review of Pauling’s first edition and followed it up with a letter in which he emphasized that

Even if every suggestion or criticism [contained within the review] were completely ignored, I would continue to believe [General Chemistry] far ahead of any other text in the field and would continue to use it in any of my courses wherein I thought it to be appropriate.

Many professors who did not adopt the text for their courses admitted to keeping a few copies on hand for themselves and, on occasion, for their advanced students. More still reconsidered their initial rejection of the book when the Frantz-Malm laboratory manual came out in 1949. Of the overall response to General Chemistry, Bill Freeman wrote, “Oh we will slip from grace now and then – I hope it will be because we are trying to improve on the conventional.”

What is beyond doubt is that General Chemistry was wildly successful, even if it didn’t always reach its intended audience, and the royalties that Pauling received provided him with a new level of financial comfort. While most of the windfall was used to support Pauling’s ambitious travel schedule, he did choose to invest in at least one comfort item: an outdoor pool at his Pasadena home.

Affectionately dubbed by his children as “the pool that General Chemistry built,” the space quickly became a gathering spot for some of Pauling’s luckier graduate students, and evolved from there into a location where students could engage Pauling in lively conversations and solicit advice. Not unlike Pauling’s book, these conversations, on any number of occasions, led to insights that shifted the entire course of a student’s professional trajectory.

Advertisements

An Auspicious Friendship

gen-chem-ad

[An examination of General Chemistry, published by Linus Pauling seventy years ago. This is part 2 of 7.]

William Hazen “Bill” Freeman established the publishing firm of W.H. Freeman and Company in 1946. On breaking with his previous employer MacMillan Publishers, Freeman said simply, “We made so bold a move because we found that every factor contributing to the success of such a venture was at hand, waiting to be put to work.” There is little doubt that Freeman was thinking of Linus Pauling when he made this statement, but his confidence was also born of extensive experience in the publishing world, working especially with college textbooks.

Freeman brought all his resources and skills to bear on Pauling’s General Chemistry manuscript. He began by circulating early drafts of the text to curate specific feedback in cases where he himself was not equipped to offer it. He also promoted the finished text tirelessly and, through the process, worked without complaint around Pauling’s complicated lecture and travel schedule. Put simply, Freeman knew that he had a singular resource in hand with Linus Pauling, and he did his best to do right by this relationship, both out of respect for Pauling and out of interest in building his business.


gen-chem-hayward

Illustration prepared by Roger Hayward for use in General Chemistry, 1947.

Without question, another individual who contributed greatly to the success of General Chemistry – and to W.H. Freeman and Company – was Roger Hayward, who joined the duo early on as an illustrator at Pauling’s insistence. Hayward moved from the East Coast to Pasadena in 1929, upon which time he became a member of the Caltech One-Hundred-to-One Shot Club, which was comprised of individuals interested in astronomy. Through this connection, Hayward gradually came to be involved with several projects involving Caltech faculty and ultimately met Pauling in the 1930s.

Hayward was an architect by training and Pauling so respected his skill as a draftsman and an artist that he insisted that he was the only one up to the task of creating illustrations for General Chemistry. Pauling was no doubt attracted to Hayward’s unique approach to scientific illustration, wherein he conducted in-depth and detailed research on the scientific principles underlying his topic before ever setting pencil to paper. Freeman also recognized Hayward’s unrivaled skill, and enlisted him on a number of other projects beyond Pauling’s text. By the end of their partnership, Pauling considered Hayward to be not only a collaborator and a friend, but a scientist as well.

As the General Chemistry text was being developed, Pauling evinced such faith in Hayward’s abilities that he offered to transfer .05% of his royalty rate to the illustrator, a payment that would be made in addition to the fee that Freeman and Co. had contracted for the illustrations themselves. Bill Freeman agreed to this arrangement and generously matched Pauling’s offer such that Hayward ultimately received royalties at the rate of 1% for every copy sold – a rate nearly as high as Pauling’s 1.5% royalty agreement.

While seemingly generous, this understanding later proved to be fraught with complications, and Hayward often complained that Freeman and Co. did not adequately compensate him for the amount and quality of work that he contributed. Pauling and Freeman, growing exasperated with this behavior, privately agreed that Hayward was a key contributer but also a “bit of a prima donna.”

Nonetheless, Freeman deeply respected Hayward as a serious artist and clearly understood the value that he brought to the company. As a result, he strove to adjust financial arrangements so that they would benefit all parties involved. For a brief period in the early 1950s, Freeman even brought Hayward on under contract as a staffmember at Freeman and Co. Although the arrangement ended before Hayward’s ten-year deal had expired, the two men deeply appreciated the friendship they shared. Indeed, even in the midst of sensitive and difficult financial negotiations, their letters often ended with mutual expressions of hope that they would see one other soon.


gen-chem-ad2

Under Freeman’s stewardship, Pauling’s manuscript underwent a number of important changes. Initially organized into thirteen chapters, the text was ultimately divided into thirty-three chapters by the time of its publication. In so doing, Freeman and Pauling agreed to remove an initial chapter on valence, choosing instead to disburse the subject matter into a series of subsections located throughout the book.

Likewise, in the manuscript version, Pauling had included a small introductory paragraph on the broader subject of chemistry before diving into his material. In the published book, Pauling instead dedicated his entire first chapter to the importance of studying chemistry as well as the mission and philosophy of the textbook that he had written to help aid in this endeavor. This change allowed Pauling to provide guidance to students on how they might use the book itself, a particularly important addition given that he was breaking from traditional pedagogical styles.

Freeman and Pauling also decided to move chapters on chemical reactions, the properties of gases, and thermochemistry to the end of the book, judging these topics to be sufficiently advanced that a strong foundation on elementary topics should be established first.

Most of the changes that Pauling and Freeman made reflected a desire to create more space to explore topics and to build logical connections between sections and chapters. In the chapters that Pauling eventually added, he covered specific elements like sulfur and nitrogen, as well as compounds including water and several metals. Other changes in chapter order enabled deeper introductions to substances and solutions prior to walking readers through investigations of matter, properties, and variations.


As late as 1947, mere months before Freeman and Co. released the book, Pauling was still calling his text Principles of Chemistry. Freeman suggested that the title be changed to A General Chemistry, because he felt that it conveyed a sense of modesty.

Once Pauling had dropped the indefinite article in favor of a more authoritative title, General Chemistry, Freeman offered him three possible subtitles from which to choose: “An Introduction to Modern Theory and Descriptive Chemistry,” “A Statement of Modern Theory and Descriptive Chemistry,” or “An Introductory Statement of Modern Theory and Descriptive Chemistry.” Pauling eventually synthesized the three into “An Introduction to Descriptive Chemistry and Modern Chemical Theory.”

This subtitle reflected Pauling’s goal for the book itself: in his text, he sought to present descriptive chemistry and theoretical chemistry alongside one another to illustrate their equal significance and impact. His first chapter made clear that he felt practical work, in tandem with study and review of the facts of chemistry, were vital to a full understanding of the subject. In reflecting on this point, he noted that

A well-educated man or woman needs to have an understanding of the material world in which he lives as well as of literature and history, and he may find great pleasure in the appreciation of new knowledge as it results from scientific progress.


gen-chem-ad3

Once Pauling had a completed his draft, he and Freeman fell into a rhythm, editing the manuscript collaboratively through a series of memos and letters. Pauling typically submitted one chapter at a time, to which Freeman would quickly reply with corrections and suggestions. From there, Pauling would counter by accepting, rejecting, or offering alternate suggestions. In effect, the letters acted as a written dialogue between the two; Freeman providing detailed explanations with his feedback and Pauling taking care to respond and explain his choices.

By February 1947, Freeman told Pauling that their collaboration had exceeded his initial expectations for progress, but that they still needed to keep pushing if they hoped to have a successful first year. The publisher’s goal was to sell between 13,000 to 16,000 copies of the book within its first year in circulation, but this number would only be attainable if they had shipped review copies to professors before the end of spring term.

Subsequently, the two increased the pace of their correspondence and managed to get 500 review copies out by the end of May 1947, with an official release date set for that September. The estimated price of the volume was $4.25 per copy. It would span 600 pages and include 160 of Hayward’s illustrations. Just prior to printing, Pauling wrote a preface that stated his goal for the text:

a special effort has been made in this book to present the subject of chemistry in a logical and simple matter, and to correlate descriptive chemistry with the theories of chemistry.


gen-chem-comment

Comment sheet collected by Bill Freeman, 1947.

As they neared completion, Pauling offered to assist with his own marketing by proposing that he send a table of contents and brief description of the book to former Ph.D. students from Caltech who were now teaching classes of their own. Freeman gently declined this idea, explaining to Pauling that an author did not conventionally promote his own text and asking that all marketing activities be left to the publishing house. Freeman and his assistant, Janet MacRorie, subsequently created a vigorous advertising plan, targeting chemistry professors at all major universities as well as several smaller institutions. The publishers also sent out an open later including excerpts from the book that Freeman believed best demonstrated Pauling’s distinct and straightforward writing style.

In April, Freeman and Co. sent page proofs of the first five chapters of the book to fifteen different schools, with the idea that doing so would allow them to receive and incorporate feedback in the finished product. The response was overwhelmingly positive, but did contain points of constructive criticism that provided direction for revision. Reviewers typically highlighted passages that they felt would be too complex or confusing for their own classes, drawing from their own unique experiences working with undergraduates.

Freeman collected the primary concerns expressed about the book and organized them for Pauling to review. Though some felt that the text was too challenging, Freeman remained confident that even those who were critical in the beginning would return to it if Pauling spent the next year collecting observations and announcing plans for revision at a forthcoming date.

Pauling and Freeman were both deeply invested in the project, so much so that, when it came out, Freeman told Pauling that he felt like a “first time father in the maternity ward.” Once the final version arrived back from the printers, it became clear that Freeman’s commitment to meticulous editing had paid off; Pauling remarked that he had never seen such an extensive publication that contained so few errors.

The duo soon had further reason to celebrate: by June 1948, over forty colleges had adopted or were planning to adopt General Chemistry. Meanwhile, Pauling’s royalties for the first printing of the book summed to nearly $3,700 (over $38,000 in today’s dollars) and continued to increase over the next ten years, bumping up significantly more after the release of the second edition. By the end of 1950, eighty-three colleges had adopted General Chemistry and Pauling’s royalty rate had increased from 1.5% to 3%For author and publisher both, this project was already a huge success.

Dr. Ina Heumann, Resident Scholar

Ina Heumann

Dr. Ina Heumann, a historian of science affiliated with the Max Planck Institute for the History of Science in Berlin, is the most recent individual to complete a term as Resident Scholar in the Oregon State University Libraries Special Collections.  Heumann spent two months in Corvallis studying the Roger Hayward Papers and the Ava Helen and Linus Pauling Papers as part of her on-going investigation into the connection between art and science with a specific focus on illustrated scientific texts.

From her study of the relationships built by Roger Hayward over his more than three decades as a scientific illustrator, Heumann found that significant tensions regularly arose between scientist and artist.  Without doubt, prominent among these tensions was the issue of money.  One striking example involved Hayward’s provision of a large bulk of illustrations to the publishing house W. H. Freeman & Co. for use in the first two editions of Pauling’s profoundly successful text General Chemistry.  While Pauling’s General Chemistry royalties in 1949 alone amounted to $5,000, Hayward received roughly $120.  Indeed, questions over just compensation for the value added by illustrations in scientific texts would dot Hayward’s long association with the Freeman company. And while both sides usually found room for compromise in their periodic bargaining sessions, the discussions were often acrimonious.

Of equal or even greater importance were issues of hierarchy and respect.  As many, including Heumann, have pointed out, Hayward was no ordinary illustrator.  For one, he thoroughly researched the science behind the instruments and processes that we was depicting; in that sense he “knew what he was drawing” on levels far beneath the surface.  At the same time, it was of vital importance to Hayward that his drawings be understandable and comfortable to the reader.  As he wrote

I try to put in enough familiar details so the reader will recognize them and feel on familiar ground.  Therefore I am careful to show more detail of glassware, for instance, than he really needs.

Despite the level of thought and attention that Hayward poured into his work, Heumann uncovered numerous instances in which Hayward was made to understand his place in the pecking order.  As most bluntly discussed by William H. Freeman in an important letter sent to Pauling in January 1953, Hayward was viewed as

a bit of a primadonna.  He has to be handled just so.  He thinks of himself as a professional person – which he is – who wants to be treated as such, rather than as a skilled craftsman.  Like all artists (and he is one of those, basically), he is a bit of a problem and [in] this case a bit of a genius.

Heumann argues that Hayward should more accurately be thought of as a “border crosser.”  In her Resident Scholar talk, she fleshed out this idea:

Hayward was architect, artist, craftsman, illustrator and inventor, not to mention his interest and competence in chemistry, optics, physics or mathematics.  However: The only formal degree he had was in architecture and technical engineering.  He was a self-made man, someone who loved to ‘get the books and dig the knowledge out’ by himself, as he once put it….Thus Hayward’s talent to serve as intermediate figure rooted at the same time on his deficiency: he was always in-between, being neither a scientist nor a mere illustrator, neither an educated expert nor just an average layman….Consequently, he was both needed and at the same time neglected.

It was this status as “border crosser” that lay at the heart of many of the creative and professional constrictions with which Hayward and his peers struggled throughout much of the twentieth century.

Hayward enjoyed a far more harmonious relationship with Scientific American magazine, whose “Amateur Scientist” column he illustrated for some twenty-four years.  Described by publisher Dennis Flanagan as “a marriage made in heaven,” Hayward’s partnership with the magazine proved fruitful for all parties involved.  The column, in particular, provided Hayward with an opportunity to stretch his intellectual wings given that he was, in essence, an amateur scientist himself.  And so it is that the illustrator regularly, in Heumann’s words,

contributed countless ideas and suggestions for improvements of the devices he had illustrated.  The letters were often literally published in the column, citing Hayward as an experienced expert of amateur science.  He illustrated and commented on questions like ‘How to measure the Metabolism of Animals,’ ‘Cloud Chambers and Detecting Nuclear Events,’ or how to construct inexpensive x-ray machines.

At their zenith, the “Amateur Scientist” columns were excellent examples of “scriptovisual documents” – documents that “can be read and looked at simultaneously.”  So too was the 1954 journal publication “The Structure of Protein Molecules,” authored by Linus Pauling, Robert Corey and Roger Hayward, and containing nine columns of text and nearly eighteen columns of drawings.

It is these sorts of scriptovisual documents, Heumann argues, that most directly prove the worth of the work done by individuals like Hayward.  For centuries drawings have enabled scientists to develop their own ideas in private and have likewise become essential to communicating complex information to a broader audience.  It was and remains morally and intellectually correct for scientific illustrators to place a premium on their work.  On the same token, the study of scientific illustration remains a tantalizing prospect for further historical examination.  As Heumann writes, “It becomes very obvious in the papers of Roger Hayward: behind the images is a story as worthy to be told as behind the texts.”

The OSU Libraries Special Collections Resident Scholar Program is supported by the Peter and Judith Freeman Fund. Past recipients have included Dr. Burtron Davis of the University of Kentucky’s Center for Applied Energy Research, Toshihiro Higuchi of Georgetown University, Dr. Mina Carson, professor of history at Oregon State University, Jane Nisselson, a documentary filmmaker based in New York City and Julia Bursten, Ph.D. candidate at the University of Pittsburgh.