Getting to Know Richard van Breemen

van_breemen

Richard van Breemen

[The end of 2018 will mark the conclusion of Richard van Breemen’s first year as director of the Linus Pauling Institute at Oregon State University. Recently, the Pauling Blog sat down with Dr. Van Breemen to learn more about his scientific background, his career in research, and his vision for LPI.

Today’s post, which is part 1 of 3, focuses on his early years and his connections with Linus Pauling. The transcript that follows has been lightly edited for clarity and continuity.]

Early Years

Pauling Blog: Tell us about your earliest interests in science.

Richard van Breemen: I come from a family with a fairly substantial scientific background. My grandfather on my mother’s side came from a homesteader family in Iowa. He was the first in his family to go to college, and he went to the University of Iowa in Iowa City, stayed on there, got an early PhD in Physiology, became a faculty member, and eventually the department head of Physiology at the University of Iowa. My mother and father met each other at Iowa in graduate school; my father became a university professor as well. I moved around the country a little bit with him; he was at the University of Colorado and eventually became head of the Biology department at a state teacher’s college in Maryland called Salisbury University. So I’m a third-generation university professor.

So growing up, there was always science around the house. My mother got me and my brothers involved actively in the 4-H program in rural Maryland where we were, on the eastern shore. I had a county award-winning insect collection; I was learning about etymology at an early age. We had shell collections from coasts around the country. So there were lots of science projects going on around me; my parents made it a very rich environment in that sense. I’m very thankful to them.

PB: Can you tell us how this progressed? The progression of your scientific interests through your high school and undergraduate years?

RVB: In high school, I also developed an interest in music. I’ve found that quite a few scientists have also been interested in music over the years, so maybe there’s some part of the brain that is both music and science together. So I applied to colleges to be either an oboist, as an obo major, or as a physicist, a physics major. I chose Oberlin College because it offered both music conservatory and a strong science academic program.

I didn’t intend to major in chemistry, but I thought it was a good idea to take some first-year, maybe even second-year organic chemistry courses. Multiple times during my first semester of chemistry as an undergrad, Norman Craig, my teacher, said, “I’ll say this only once, because I hear some of you are still learning this in high school chemistry: this is 19th century and it’s wrong.” And every time he said that, that was exactly what I learned in high school chemistry. So I was intrigued by that.

By the end of my first semester, I was a chemistry major. So thereafter I talked with my advisor in school about a path to follow; what I was interested in doing. I wanted to merge chemistry with biology. Today we call that chemical biology, and there’s departments of this, like at Harvard and other schools around the country; departments of Chemical Biology. But that’s what I wanted to do back in the 1970s, and so I was steered towards a track – “maybe look into pharmacology or toxicology.”

PB: And then what happened?

RVB: Well, I went to the University of Iowa, where I had some family ties, and spent the summer as a junior working in a pharmacology laboratory. I was introduced to an analytical tool called a mass spectrometer and I was pretty much hooked on it from then on. Today, one of my hats is biomedical mass spectrometrist. So that was the beginning of that program.

So when it came time to apply to graduate school, I applied to schools of Toxicology and Pharmacology, and chose to go to Johns Hopkins University, in the Pharmacology program. At that time, and to this day, Pharmacology at Johns Hopkins has a very strong chemistry focus. I chose an advisor, Catherine Fenselau, who had been a student of Carl Djerassi at Stanford. Djerassi is a famous chemist, connected with the invention and early development of oral contraceptive pills. So what Catherine Fenselau did in Djerassi’s lab was to introduce him to the analytical tool of mass spectrometry, which he vigorously pursued for many years thereafter. Catherine moved from Stanford eventually to Johns Hopkins University, in Pharmacology, in 1967, and brought into that medical school, for the first time, mass spectrometry. I became her first graduate student at Johns Hopkins. So in a sense, I trace my lineage to Carl Djerassi; like my grandfather in graduate education.

Carl_Djerassi_HD2004_AIC_Gold_Medal_crop

Carl Djerassi

So in that context, I learned about drug metabolism, analytical chemistry, in terms of how it can help solve chemical structures for new chemical entities, but also to follow how molecules change in the body. Mass spectrometry is also quantitative, and it shows you how much of a compound might be in blood or tissue. To this day, I use that as a tool for all of my research.

PB: The tool has changed a fair amount, I have a feeling.

RVB: In the 1980s, as a graduate student, mass spectrometry was a very exciting time. I tell the story to my students about how there have been three eras of mass spectrometry. The first one was the era of the physicists, using and inventing mass spectrometry to prove the existence of isotopes of the elements. Second era was the organic era, and that was championed by people like Carl Djerassi, Klaus Biemenn, and others who showed how mass spectrometers could be used to determine structures of organic molecules. At the end of each of these eras, professors were telling their students: “Don’t go into mass spectrometry, the field is done.” Physicists told their students back in the 1940s, “We’ve identified all the elements, all the isotopes. Don’t get involved in this field.” And then, by the end of the 1970s, organic chemists were telling their students, “Don’t get involved in mass spectrometry, because we know everything there is to know about the interpretation of mass spectrum that has application to organic molecules.”

Then, as a graduate student, new techniques were introduced to ionize macromolecules, to make proteins of sixty-thousand, a hundred-thousand molecular weight gas phase ions that could be manipulated in the vacuum of a mass spectrometer and measured, and the structures determined. So we’re still in that era of biomedical mass spectrometry, which has been the subject of Nobel Prizes for people like Koichi Tanaka and John Fenn, who shared the Nobel Prize for applying mass spectrometry to protein structure determinations and weighing them.

176-7675_IMG

John Fenn visiting the Oregon State University Libraries Special Collections storage stacks, 2012.

PB: What was your sense of Linus Pauling when you were a student?

RVB: Well, I was aware of Linus Pauling for that fabulous chemistry textbook that he had written for undergrads, but also for his work with the structure of proteins and the alpha helix and crystallography; with x-ray crystallography of protein structures. So the chemical bond, in his work, was structures of macromolecules.

And of course I grew up in an era where, in public school, we were told to hide under our desks or go into the hall in case there was a nuclear strike, and so Pauling’s work to stop the proliferation of nuclear weapons and halt the atmospheric testing of nuclear weapons was something I was very aware of in the early 1960s. And one could think of that as sort of the next stage of his career, when he became an activist in world peace.

Of course now, in the Linus Pauling Institute, I’m realizing that the last stage of his scientific career, where he was involved with how natural products – vitamins, minerals, micronutrients – can help maintain health and prevent disease; that’s something he was very active with from the 1970s until he passed away in the 1990s.

Meeting Linus Pauling

PB: You met Pauling, did you not? When you were at NC State?

RVB: Yes, I did. This was during my very first year, and in my first academic job as an independent assistant professor. The department of Physics at North Carolina State continues to have an endowed lecture program, and they invited Pauling to give a lecture in the fall of 1986, and I was lucky enough to not only attend this lecture but to go to a reception in his honor, to get a chance to talk to Pauling for five or six minutes on my own. I was mainly asking him about – he was passionate about teaching, educating new generations of young people, undergraduate teaching, as well as graduate education. I was teaching organic chemistry for the very first time, and some of my colleagues were skipping the chapter of organic chemistry books that deals with spectroscopic characterization and the identification of organic molecules – that includes mass spectrometry, as well as nuclear magnetic resonances, infrared spectroscopy, ultraviolets spectroscopy, and so on. It was optional.

So I wanted to teach it. Not all of my colleagues were, because they wanted to spend more time on the other chapters. We all had to start with the same textbook and the same chapter and finish by the end of the semester on the same chapter, but in between we were free to teach however we felt best. So I included that chapter on spectroscopy and the determination of organic chemical structures. Pauling said that was just fine and in his chemistry textbooks, he told me he had a chapter describing mass spectrometry too, so he thought that I should follow my heart on that one. I didn’t think to ask him about his Linus Pauling Institute. Of course I couldn’t have known where I would be all these years later, but if I had, I would’ve asked him more about that aspect of his career, and what he was doing in his Institute at that time. His lecture was actually about the structures of certain kinds of crystals-a physics lecture, in this particular case [on quasicrystals].

A Pauling Research Connection

RVB: With Norman Farnsworth, who has now passed away, but was a very esteemed, world-famous pharmacognosist, we founded the first NIH-funded botanical center for dietary supplements research in 1999. That grew out of the Dietary Supplement Health Education Act, known as DSHEA, of 1994. And here’s a Pauling connection.

farnsworth

Norman Farnsworth

In the 1970s, when Linus Pauling got to being very active in research with vitamin C and cancer prevention, there was a move by the Food and Drug Administration, and by Congress, to regulate vitamin C and other vitamins as potential drugs or therapeutic agents. Pauling argued, testified before Congress, worked very diligently, to help keep vitamins and mineral supplements over-the-counter. He felt that that these compounds were so safe that it wasn’t necessary to make them prescription-only. First, he advocated for larger doses of Vitamin C than was necessary to prevent scurvy, but that’s the whole area of research that became the Linus Pauling Institute.

So he was successful, Congress only passed laws that helped regulate the amounts of certain nutrients and for the most part vitamins and mineral supplements remain over-the-counter…of course, there are prescription medicines for pregnant women who need extra vitamins during the prenatal period.

Skip ahead twenty years to the 1993-94 period of time, and Congress revisited whether dietary supplements should be regulated in a new and different way. This was towards the end of Linus Pauling’s career – or, his whole life – but he still weighed in on this. And I was just checking some of the facts and figures in this archive here at the Oregon State University Library, and Pauling did have written into the Congressional Record some of his opinions regarding the possible regulation or why dietary supplements should not be overly regulated, and I think he had another major effect because people listened to him in Congress.

And I think what came out of that period of Congressional hearings was the Dietary Supplement Health Education Act of 1994, which created a niche market for dietary supplements: they are neither drugs and regulated by prescription, nor are they foods, which has a whole different set of regulations. But it did authorize the Food and Drug Administration and the Federal Trade Commission to regulate what’s on the label, and to act if anything was being marketed that was harmful. The FDA has since issued a regulation that requires dietary supplements to be produced using good manufacturing practice. That wasn’t initially part of their regulations, but that has been added since.

So part of the DSHEA Act was to establish the Office of Dietary Supplements within the NIH – ODS – and gave them money by statute to investigate the safety and efficacy of botanical dietary supplements with the mission of protecting the health of the consumer. And by 1999, the very first grant out of that Office of Dietary Supplements was issued, and there were two grants funded that year, one to University of Illinois at Chicago, where I was, working with Norman Farnsworth, and the other to UCLA. That program has continued to this day, and when I left the University of Illinois at Chicago, I was the director of that botanical center. I wasn’t able to move it to Oregon State University, but the grant continues, and I continue to work with them, running a project in an analytical core to support the work that we began in 1999, looking at the safety and efficacy of botanical dietary supplements used by women.

So there’s a little overlap with Linus Pauling and the work I was doing in Chicago before coming here.

Pauling’s Enduring Legacy

PB: What is your sense of Linus Pauling’s legacy today?

RVB: Well, Pauling’s legacy, it continues in many, many ways. He, of course, received his first Nobel Prize for his work on the chemical bond, using a synthesis of theory and laboratory experiment to prove what the nature of the sigma bond is between atoms, like two carbons. All of chemistry today owes him a lot in that sense; he was extremely brilliant in many respects, he thought ahead. When I talked with him at that brief meeting during his lecture in North Carolina, he told me he was writing his next paper in the back of his mind as we were speaking. But he typically would write a paper, have all the aspects of it worked out in his mind, before sitting down with a typewriter.

He obviously had a lot of things going on at any one time. He was ahead of his time in his efforts to contain nuclear weapons – I think most of the world caught up later to realize how important that work was, in leading to the test ban treaty.

I think the work that began the Linus Pauling Institute was also well ahead of its time. He certainly received a lot of criticism. I think folks in biomedical research might’ve circled their wagons and said, “well, you’re a chemist, what do you know about cancer and cancer prevention?” But in many respects, he was ahead of his time there, and we now know, not only can vitamins prevent the diseases of malnutrition, but they do have benefits beyond simply keeping all of the biochemical pathways working. So to say that vitamin C has no benefits at all as supplements, of course, wouldn’t be true, because it prevents the disease of scurvy, and then there’s rickets and other vitamin deficiency diseases. So we definitely know that vitamins are essential for human health. The question is, what’s the optimum for human health? And that’s something that the Linus Pauling Institute began exploring and, to this day, we are continuing to work on that.

The Lomonosov Gold Medal

1978h.1-obverse-400w

The late 1970s, a period still defined by Cold War tensions, was full of obstacles for Linus Pauling. Living in California, Pauling had been confronted with a number of serious issues within the research institute that bore his name, including a wrongful termination lawsuit and chronic financial instability. Likewise, his continuing research on the potential therapeutic impact of vitamin C on cancer drew mounting criticism from the scientific community, and he was often denied funding to further his work.

One of Pauling’s supporters and friends, psychiatrist Dr. Humphry Osmond, believed that the nature of Pauling’s research was not the only reason why funding sources had chosen to withhold support. For Osmond, it seemed that many granting institutions had been steering clear of Pauling ever since his loyalty and patriotism had been questioned nearly thirty years before.

So in the minds of many it was a mixed piece of news when, in Fall 1977, Pauling received notification that he would be awarded the Soviet Academy of Science’s highest honor, the M.V. Lomonosov Gold Medal. But for Pauling, the choice to accept was easy. Never shy in the face of controversy and always eager to improve scientific relations between the world’s two superpowers, Pauling happily agreed to the Soviet offer and began making plans to receive the award in Moscow.


220px-M.V._Lomonosov_by_L.Miropolskiy_after_G.C.Prenner_(1787,_RAN)

M.V. Lomonosov

The Lomonosov Gold Medal was named after Mikhail V. Lomonosov, an eighteenth century natural scientist who developed the concept of heat movement as well as a basic understanding of matter. Lomonosov was particularly significant to the Soviet Academy of Sciences as he founded the organization’s first chemical laboratory in 1748. In addition to his scientific significance, Lomonosov was also a humanitarian who often commented on social issues within his writing.

First awarded in 1959, the Lomonosov Gold Medal was designed to honor individuals who had made especially significant contributions to the understanding of natural sciences. The purview of the award clarified a bit more in 1969, when the Academy decided to grant it annually to two recipients: one Soviet and one foreign.

In 1977, the year that Pauling was selected, Mikhail Lavrentyev also was recognized as the domestic recipient. Lavrentyev was a mathematician who had organized the Siberian branch of the Academy in 1957 and who had previously received many other national awards including the USSR State Prize, the Lenin Medal and the title Hero of Socialist Labor. Subsequent American winners have included Pauling colleagues James Watson, Alexander Rich and Roald Hoffmann.


1978i.014-300dpi

Pauling delivering his lecture at the Shemyakin Symposium, September 1978

Pauling accepted his medal about a year after the award notification was circulated. He did so at the Shemyakin Symposium on Frontiers in Bioorganic Chemistry and Molecular Biology, which was held in Moscow in late September 1978. Pauling had initially been invited to attend the Soviet Academy’s annual meeting the previous March, but was unable to clear time in his schedule until the fall. The Shemyakin Symposium was arrived at as an agreeable compromise, and Pauling made the trip with his wife, Ava Helen, as well as his research partner Ewan Cameron and Cameron’s wife too. (Pauling insisted that both Cameron and the symposium would benefit from their combined presence.)

Bestowed “for outstanding achievements in the fields of chemistry and biochemistry” and for his work as “an active fighter for peace among the nations,” the medal was given to Pauling by Anatoly Alexandrov, the president of the Soviet Academy, at the symposium’s opening ceremony. Pauling accepted the award by giving an address that detailed the specifics of his most current work. Titled “Orthomolecular and Toximolecular Medicine Compared,” Pauling’s lecture was delivered to an audience of more than 300 people, including 70 scientists visiting from other countries.

Later on in the symposium, Pauling gave another talk on a completely different area of interest: “The Nature of the Bond Formed by the Transition Metals in Bioorganic Compounds and other Compounds.” While in Moscow, the Paulings also did their best to take in as much culture as possible, and following the close of the meeting the couple traveled to Uzbekistan where they visited the cities of Tashkent, Samarkand, Bukhara and Khiva.


220px-RIAN_archive_25981_Academician_Sakharov

Andrei Sakharov

Though Pauling’s receipt of the Lomonosov Medal would only serve to heighten the suspicions of certain stateside critics, the response from his colleagues was mostly very warm. But in one particular instance, an important peer saw the decoration as an opportunity for Pauling to do more, and quickly.

Only days before accepting the medal in Moscow, Pauling was handed an untranslated letter written by Andrei Sakharov, the famed Soviet dissident who had received the Nobel Peace Prize in 1975 for his activism. In the letter, Sakharov urged Pauling to use the Lomonosov trip to speak out against the wrongful imprisonment of Soviet physicist Yuri Orlov, mathematician Alexander Bolonkin, and biologist Sergei Kovalev. “I am convinced that today you share the concern of many Western colleagues over violations of human rights in the whole world,” Sakharov wrote, “and particularly in the Soviet Union.”

Kovalev’s case was representative of the persecution suffered by many scientists who spoke out in favor of reforms. A member and supporter of the organization Action Group for the Defense of Human Rights in the USSR, Kovalev had been sentenced to seven years in a hard labor camp and another three year in a standard prison for his activities.

Pauling was caught off-guard by Sakharov’s communication which, unbeknownst to him, had also been released to the media. While in the Soviet Union, Pauling did not address the content of Sakharov’s request, and when he returned to the U.S. he found that his reputation had suffered for this in action.

In a letter to the editor of Physics Today authored a month later, Pauling defended himself, noting that

I had signed statements and had written letters about scientists and other people whose rights have been reported to have been violated by the USSR government and other governments, although I could not remember with confidence whether or not I had taken action about these three men. I added that all governments are immoral, and cited the example of the United States government, which in 1952 refused me a passport and thus prevented me from participating in the two-day symposium in London that had been organized by the Royal Society…

A response to Pauling’s letter by I.I. Glass of the University of Toronto called him to task for comparing “what happened to him during the McCarthy twilight era with the darkness in which many of our colleagues in the USSR are living today.” Pauling offered this reply:

All governments are immoral. But I agree with Glass that the immorality of the government of the US is different from that of the government of the Soviet Union. Also, I am concerned about Sakharov and other scientists in the Soviet Union. My letter to Physics Today expressed my concern, although only briefly, and expressed also another concern, about how the Sakharov problem is being handled. I wish that I knew more about the whole matter.

Although Pauling does not appear to have followed-up on the issue raised by Sakharov in September 1978, the two activists did maintain a correspondence and, in the years that followed, Pauling offered public support for multiple appeals issued by his Soviet counterpart.

Pauling’s Induction into the Soviet Academy of Sciences

1958h.4-400w

On June 20, 1958, in the midst of the Cold War and almost exactly 25 years after being inducted into the National Academy of Sciences, Linus Pauling was unanimously approved for inclusion in the Akademia Nauk (Academy of Sciences) of the USSR. Founded in 1724 during the reign of Peter the Great and charged with conducting national research and overseeing scientific publications, the Academy had attained a position of major importance in Soviet society and its domestic members were among the highest paid individuals in the communist country.

Though often critical of Soviet leaders, Pauling never had any qualms about engaging in scientific exchanges with Russian scientists, even during the frostiest years of U.S-Soviet tensions. In one particular instance, a year prior to being honored by the Soviet Academy, Pauling had extended invitations to two of its members to visit Caltech and deliver lectures on their current research. At the time however, the greater Los Angeles and San Francisco areas had both been closed “to anybody holding a Russian passport,” and the scientific invitees were unable to accept Pauling’s offer.

In response, Pauling made a point of criticizing the U.S. Department of State, claiming that its policies ran counter to a recent commitment by the federal government to increase “freer exchange of information and ideas,” to push that “all censorship [be] progressively eliminated” and to “further exchanges of persons in the professional, cultural, scientific and technical fields.”


Pauling’s award notification from the Academy expressed “the hope that your election as a foreign member will promote further strengthening of the bonds between scientists of the USA and the Soviet Union.” And while Pauling accepted the offer warmly, others cast a very skeptical eye toward his embrace of this particular decoration.

While the responsibilities of his membership were purely honorary and the Academy insisted that he was being recognized for his scientific accomplishments, many media outlets, including the New York Times, suspected that the decision had been politically motivated. In his response, Pauling noted that the Soviets “have been strongly critical of my work in the past,” pointing out in particular that, in 1951, the Academy had deemed his theory of resonance to be “reactionary” and “bourgeois.” In the years since, Pauling supposed that the Soviets had “learned that you can’t mix politics up with science.”

Pauling was well-aware that his acceptance of the Academy’s nomination would garner criticism, but for him it was worth it to take a stand in favor of academic freedom. In a statement to the Associated Press, Pauling affirmed his strong belief “in the importance of improving international relations in every way” and expressed enthusiasm at the idea of “becoming better acquainted with the scientists in the USSR.” The letters of congratulation that he received from his colleagues indicate that this point of view was shared by many.


Pauling did not travel to the Soviet Union to accept his award, but he did address the topic of his membership in several lectures that he delivered during the summer of 1958. One talk, delivered at Antioch College on the day of his nomination, used the honor as a rhetorical starting point for a deeper discussion of a path toward reducing the risk of nuclear was. In this, Pauling emphasized that the United Nations must be strengthened, that nuclear weapons tests must cease, and that the world choose to recognize the communist government in China.

The president of Antioch College sent Pauling a follow-up letter indicating that the local media had mostly accepted Pauling’s ideas on merit, though the Dayton Daily had refused to report on the event at all due to Pauling’s membership in the Soviet Academy.


lp-bronk

In addition to Pauling, one other American was added to the Soviet Academy in 1958. Detlev Bronk, a well-known and accomplished scientist, had also served as president of Johns Hopkins University from 1948-1953. During this time he created the Hopkins Plan, a successful approach to student advancement that emphasized allowing undergraduates to choose their own rate of progression through their course of study.

Bronk and Pauling were also friends who corresponded with one another about issues both personal and professional well before their induction into the Academy. Their bond had been formed by shared scientific interests, but also by a similar worldview. Notably, Bronk had shown himself to be a defender of academic liberty by speaking out in favor of a professor who had been accused by Senator Joseph McCarthy of communist involvement in the early 1950s.

Another relevant and significant name from this time period was Bruno Pontecorvo, who was  inducted into the Academy alongside Pauling in 1958. Pontecorvo, a highly regarded Italian-born physicist, was living in the US and working on atomic research when he disappeared in 1950. Considered missing for several years, Pontecorvo eventually appeared on Soviet television, at which point it was understood that he had defected. Moreover, it later became clear that the scientist had risen to a position of authority within the Soviet nuclear development program.

Confirmation of Pontecorvo’s defection came as a shock, and some feared that Pauling would follow in his footsteps. Needless to say, this did not come to pass. Pontecorvo, on the other hand, remained in the USSR and worked under the Russian flag until his death in 1993.

 

Pauling’s Induction into the National Academy of Sciences

1933h.1-900w

Since its formation in 1863, the National Academy of Sciences (NAS) has been a home of sorts for the country’s (and a few of the world’s) most distinguished scientists, and on April 26, 1933, at the age of 32 years and 2 months, Linus Pauling became the youngest current member of the group. Pauling was accepted into this distinguished body for his contributions to many scientific fields, but most significantly chemistry. And though he was still early in his career, his induction served as validation of his scientific excellence while also reflecting the growing global influence of his research and writing.


The NAS was established by an act of Congress during the presidency of Abraham Lincoln and was charged with playing a central role in advancing the nation’s scientific research agenda and in communicating with policymakers about applying scientific breakthroughs to improve the lives of Americans. Induction into the Academy was, and remains, out of reach for all but the most accomplished of researchers. Membership has also always come with responsibilities: at the time of his induction, Pauling was made to understand that he was obligated to respond to every Academy summons and to “serve the government without expectation of compensation.”

At the time that Pauling joined, there were 265 NAS members (as of 2018 there are nearly 500), only two of whom were women. Forty-four members hailed from other countries including Canada and several European nations. Within the U.S., the NAS made it a priority to pull members from every region of the country, and also urged states that had not been home to any members – states including Oklahoma, New Mexico, Washington, and Nevada among others – to produce more prominent scientists. By 1933, Pauling’s birth state, Oregon, had only produced one member (Pauling) whereas the state in which he lived, California, was home to forty-five residing members.

In addition to diversifying the geographic reach of its membership, the Academy also sought to bring in more younger faces. It had several reasons for doing so. For one, younger members were more likely to spark a connection with high school and college-age students across the country who might eventually grow into the scientific leaders of tomorrow. Of equal or greater importance was the fact that, amidst the ravages of the Depression, the Academy required energy, enthusiasm and creativity to keep itself moving forward, and younger scientists were seen as more likely to bring that about.

bio6.002.019-savant

Pasadena Post, September 27, 1933

Of the 265 Academy members in Pauling’s cohort, 159 were older than 60, and 58 had reached the age of 70 or more. The average age of new inductees was 49 (45 for chemists) and the typical age of an NAS member was 62. While the youngest inductee ever, Edward C. Pickering (1846-1919), was about six years younger than Pauling when he was elected in 1873, he had long since passed away by the date of Pauling’s inclusion. Indeed, by 1933, only three members of the NAS were under 40 years of age, so Pauling certainly stuck out.

Though Pauling ticked the boxes of a younger member who represented, if obliquely, a new part of the country, his selection was clearly predicated on merit. Pauling’s research program at the time included work that would soon become legendary. By using x-ray diffraction techniques to determine the structure of crystals, he had made great headway toward unraveling the mysteries of molecular structure, and in 1933 he published his fifth, sixth, and seventh papers in his epic series on the nature of the chemical bond. The import of these publications was quickly recognized by his peers, and when Pauling was added to the Academy he was the only selection made for the Chemistry section.


Along with much of the rest of the country, the academy that Pauling joined was struggling mightily during terrible economic times. Wrestling with an onslaught of major problems, many cash-strapped legislators were, in the words of NAS President W.W. Campbell, “unsympathetic and severely hostile” to the idea of maintaining federal funding for scientific research. Campbell argued forcefully on behalf of maintaining the support for the NAS, suggesting that

…the products of research and invention in the domain of the physical and biological sciences have been more potent in advancing the state of civilization on the earth from its low level of the fifteenth century to its high level in the twentieth century than have all other forces combined.

Fortunately for the Academy, fears that cuts in funding would relegate American universities to the status of “higher high schools” prevailed, and the NAS was allocated $250,000 to distribute to researchers during the 1933 fiscal year.

As time moved forward, the country stabilized and so did the Academy. And for a period after the war, the NAS also nearly played a very influential role in Pauling’s life. In 1947 he was nominated to serve as president of the group and fully intended to pursue this opportunity, but was compelled to remove his name from consideration when he was named Eastman Visiting Professor at Oxford University for that same year. A year later, Pauling ran successfully for the presidency of the American Chemical Society and occupied that office in the NAS’s stead.

The Gibbs Medal

1946h.1-obverse-400w

On June 14, 1946, Linus and Ava Helen Pauling traveled to Chicago to attend a dinner recognizing Linus Pauling as the thirty-fifth recipient of the Josiah Willard Gibbs Medal, an award given annually to the most prominent chemists and chemical engineers in the world. The Gibbs Medal was the second major prize bestowed upon Pauling by the American Chemical Society, coming some fifteen years after his receipt of the Irving Langmuir Prize in 1931.

By 1946 Pauling was widely considered to be among the world’s leading theoretical chemists. At just forty-five years old, he had already published more than 150 papers as well as three books. His connection to the American Chemical Society was strong as well. A member since 1920 – he joined before completing his bachelor’s degree in Chemical Engineering at Oregon Agricultural College – Pauling was also a regular contributor to the Journal of the American Chemical Society. So it came as little surprise that the Chicago section chose to honor Pauling with the Gibbs Medal. And in receiving the award, Pauling entered into truly elite company, joining other greats including his Caltech mentor A. A. Noyes (1915), as well as Madame Marie Curie (1921), current ACS President Moses Gomberg (1925), and the namesake of his previous ACS prize, Irving Langmuir (1930).


220px-Josiah_Willard_Gibbs_-from_MMS-

J. Willard Gibbs

The Gibbs Medal was established in 1910 by William A. Converse, a former chair of the Chicago section of the American Chemical Society. Converse greatly admired Josiah Willard Gibbs and considered him to be “an outstanding example of creativity in the field of scientific investigation.”

Gibbs (1839-1903) was an American mathematical physicist based at Yale University who made important theoretical contributions to multiple scientific disciplines and who helped to form the idea of intersectional science through his studies in physical chemistry. However, many of his contributions were not fully appreciated during his lifetime, and it wasn’t until later that his impact became more broadly recognized. Gibbs is now considered to be the “father of vector analysis” and his most significant work, On the Equilibrium of Heterogeneous Substances, is well-known in the scientific world.


Though he won the medal in 1946, Pauling had actually been nominated several times before. On three occasions (1941, 1942 and 1946), these nominations precluded Pauling from carrying out a duty for which he had been selected: serving as a jury committee member for the Gibbs Award.

Nominations for the award were solicited by the jury committee each September. Once a pool had been compiled, the group would then proceed through several rounds of voting until just one nominee remained. This individual would receive the award from the Chicago section in the following spring. The jury was composed of twelve eminent chemists and chemical engineers enlisted from various regional groups of the American Chemical Society. In the year that Pauling was elected, the chairman of the committee was Dr. Henry R. Spruth.

Interestingly, Pauling’s role in the process of nominating and electing new recipients of the Gibbs Medal did not end after he won. The by-laws governing the selection of recipients state that, in cases where at least eight of the twelve members of the jury cannot arrive at a consensus, “the Chairman shall secure the vote of the past Medalists residing in North America on the two or more remaining candidates” in order to decide on a single recipient. Up until his death in 1994, Pauling was regularly asked to contribute a vote to resolve situations of this type.


bio6.005.002

At the Chicago dinner, Pauling was presented the Gibbs Medal by W. Albert Noyes, Jr. A photochemist at the University of Rochester, Noyes was also president-elect of the ACS for 1946. In his introduction of Pauling, Noyes recited the long list of accomplishments that had led up to this moment:

…for eminent work and original contributions in chemistry and related scientific fields through the determination of many molecular structures, inter-atomic distances, bond angles and covalent radii of atoms; for quantitation of the classical theory of electronegativity; for extension and application of the resonance principle to chemistry; and for formulation of a framework theory of antibody formation. We honor Linus Pauling!

Pauling then delivered his acceptance address. Having penned multiple drafts in anticipation of the event, Pauling ultimately decided that, since he was being given the award primarily for his contributions to structural chemistry, he would focus mostly on this topic. He began his address by providing a survey of advancements in the field, beginning with Lucretius who, about 2,000 years before, had written that

wine flows easily because its particles are smooth and round and roll easily over one another, whereas the sluggish olive oil hangs back because it is composed of particles more hooked and entangled one with another.

From there, Pauling moved forward through a series of discoveries made by more contemporary scientists, each one building upon the next.

He then arrived at his own work which, by then, had touched on components of physics, mineralogy, chemistry, and biology, but had always followed one common ambition: the desire to truly understand the structure of the molecule. In particular, Pauling had made great use of x-ray diffraction and absorption spectroscopy techniques to advance his studies. He concluded his speech with a call to scientists everywhere that they apply the the theoretical breakthroughs that structural chemists had made in the first half of the twentieth century to the search for solutions to “such great practical problems as those presented by cancer and cardiovascular disease.”


Pauling was a popular pick for the Gibbs Award. Not long after delivering his banquet address, he received a letter from a colleague, Emory University professor William H. Jones, in which he added “my congratulations to the mound of fan mail” and asked “How does it feel to be a Cover Boy for the New Edition?”

Jones wasn’t wrong about the mountain of mail — Pauling received scores of congratulatory letters from colleagues, friends, former students and professors, and random strangers alike. The sentiment expressed by nearly all of these well-wishers was aptly summarized by fellow Gibbs laureate Moses Gomberg, who had presented Pauling with the Langmuir Prize in 1931. “He has grown by leaps and bounds – and is still young!,” he wrote. “My congratulations and wishes to him!”

[Ed Note: This is the 700th post published by the Pauling Blog.]

The Langmuir Award

1931h.1-400w

In 1931 Linus Pauling was early on in his career as a professor at the California Institute of Technology, and was deep into a program of research on structural chemistry that would prove revolutionary. Pauling was one of the brightest young minds that Caltech had seen to date, and the announcement that Pauling was to receive the inaugural Irving Langmuir Prize from the American Chemical Society served as further evidence of his extraordinary abilities. The first major award received by Pauling as an academic, the Langmuir Prize would be followed by countless additional decorations honoring a long and storied career.

The Irving Langmuir Prize, also known as the Pure Chemistry of the American Chemical Society Prize, was created by A.C. Langmuir, an industrial engineer who manufactured shellac and glycerine. First announced in early 1931, the $1,000 award was meant to serve as a form of encouragement and support for young chemists in the United States. The decision to honor Linus Pauling as the initial recipient of the award was made by a select committee of American Chemical Society members.


langmuir-12979-portrait-mini-2x

Irving Langmuir

A.C. Langmuir named the prize after his brother, Irving, a renowned scientist who would receive the Nobel Chemistry Prize in 1932 for his work in surface chemistry. In addition to his status as a Nobel laureate, Langmuir is today remembered by many for developing light bulbs that were more efficient and longer lasting than the Nernst Lamp model that had previously dominated the marketplace.

While Pauling no doubt appreciated Irving Langmuir’s practical work, his theoretical contributions made a far more profound impact on the budding young scientist, who began reading Langmuir’s papers while still an undergraduate at Oregon Agricultural College. As he noted in 1946,

I became deeply interested in molecular structure and the nature of the chemical bond in 1919, when I first read [G.N.] Lewis’ 1916 paper and Irving Langmuir’s papers on this subject.

One 1919 paper proved especially important. In it, Langmuir discussed his application of G.N. Lewis’ insights into chemical bonding and his observation that pairs of electrons can be shared by atoms in many substances. Importantly, Langmuir also used the article to put forth the idea that a full understanding of the chemical bond could not be arrived at through the simple application of a chemist’s or physicist’s training. Rather, the problem required a marriage of the two disciplines.

Titled “The Arrangement of Electrons in Atoms and Molecules” and published in the Journal of the American Chemical Society, Langmuir’s paper served as an inspiration to Pauling, who did indeed marry aspects of chemistry and physics in elucidating a new theoretical understanding of the chemical bond.

Twelve years later, Pauling was hard at work on several research projects that were driven by this stroke of inspiration. Most notably, Pauling had recently authored his landmark article “The Nature of the Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from the Theory of Paramagnetic Susceptibility to the Structure on Molecules,” the first in a series of significant papers on the structure of the molecules. By the time that Pauling received his ACS award in September, he had already released the third installment in the series. Taking note of this dizzying array of productivity, Scientific American dubbed Pauling the “explorer of electrons” in a 1931 article.


1931n.007

Humorous editorial cartoon published in the “Double Bond Jr.,” a publication circulated at the Buffalo ACS meeting in September 1931.

Pauling was nominated for the Langmuir Prize by his Caltech mentor, A.A. Noyes. The director of the Gates Chemical Laboratory and a respected member of the American Chemical Society, Noyes’ views carried significant weight with his peers, and in his nomination letter of June 8, 1931, Noyes described Pauling as “the most promising young man with whom I have ever come in contact in my many years of teaching.” This hearty endorsement, combined with Pauling’s vita – which already listed more than fifty published papers – made the decision an easy one for the award committee.

Pauling, with his wife Ava Helen, received the prize on September 2, 1931 in Buffalo, New York. At the ceremony, A.C. Langmuir praised the body of work that Pauling had already compiled and accurately predicted that he would one day be a Nobel Prize winner. The Langmuir decoration proved to be a source of significant attention for Pauling. In one of a bevy of congratulatory letters that followed, former classmate W.E. Ramsey noted that “I knew you were a genius because you could solve my calculus problems which were always a mystery to me.” Likewise, University of Chicago chemist Thorfin Hogness recounted that he expected Pauling would win the award as soon as it was introduced.

In addition to raising Pauling’s profile, the financial support provided by the Langmuir Prize was especially significant as the United States was entering into the worst years of the Great Depression. Indeed, the $1,000 award that came with the prize was equivalent to a quarter of Pauling’s annual salary. Today, in recognition of its namesake’s interdisciplinary focus, the Irving Langmuir Prize is granted alternately by the American Chemical Society and the American Physical Society. Recipients now receive a cash award of $10,000.

As time moved forward, Pauling remained very active within the American Chemical Society, serving as president of the organization in 1949. He would also win several additional major awards offered by the ACS, including the Josiah Willard Gibbs Medal in 1946. So too did Pauling receive a great many decorations from regional chapters of the organization. In 1966, he was the recipient of perhaps the most noteworthy of these awards when the Oregon and Puget Sound sections presented him with the first Linus Pauling Medal for outstanding achievement in chemistry.

 

James LuValle, the Olympic Chemist

“Mr. LuValle has made an excellent record in his graduate work with us. He is classed in the upper group of our graduate students, despite the fact that the graduate students are very carefully selected and have in general great ability.”

–Linus Pauling, December 1938

James Ellis LuValle, known for his Olympic prowess as well as his contributions to the field of photochemistry, was born on November 10, 1912. LuValle, who would later come under the academic tutelage of Linus Pauling, showed promise in the classroom at an early age and developed an interest in chemistry not long after.

The same year that LuValle completed his bachelor’s degree in Chemistry at the University of California, Los Angeles, he also competed in the 1936 Olympics in Berlin. Competing alongside famed teammate Jessie Owens, LuValle was one of a handful of African Americans to participate in a games dominated by Adolf Hitler and the ascendant Nazi party.

LuValle had been a track star during his undergraduate years at UCLA, and during the Olympic Trials he clocked a personal best of 46.3 in the 400 meters. While competing in Germany, he posted the meet’s best qualifying times but finished third in the final, crossing the line at 46.8, just 0.3 seconds behind Archie Williams of the United States and Godfrey Brown of Great Britain.

LuValle, at right, finishing third in the 400 meters at the 1936 Berlin games.


While LuValle was appreciative of his experiences as an athlete, he always prioritized his scientific education. Notably, when considering his undergraduate options, LuValle turned down football and track scholarships to USC and Notre Dame on the premise that the sports programs at the two institutions had too much say in the academic arena.

Upon returning to the United States following the Berlin games, LuValle received good news: he had been accepted into a graduate program at UCLA and would be supported by an assistantship. Within a year, LuValle finished the curriculum and completed his thesis, “Photochemistry of Crotonaldeyhde at Elevated Temperatures.” During this period, LuValle also pushed the university’s Graduate Students Association to broaden its representation, and the organization was later integrated into the university’s student association, ASUCLA.

Eager to continue his education, LuValle applied to doctoral programs at Wisconsin, Harvard, and the California Institute of Technology. With support from the Julius Rosenwald Fund already in hand, Caltech’s offer of a teaching assistantship was all that LuValle needed to decide to move across town. He began his Ph.D. work under Pauling’s guidance in 1937 and is now believed to have been the first African American graduate student to enroll at Caltech.

While university assistantships were certainly nice, the Rosenwald Fund was key to LuValle’s pursuit of an advanced education. Established in 1917, the fund provided support to two categories of applicants: (1) African Americans, and (2) white Southerners who wished to work on a problem distinctive to the South and who expected to also build their careers in the South. The scholarship was open to men and women between the ages of 22 and 35.

While the fund was typically awarded for a single year and offered a stipend of $1,500, renewal was sometimes granted in exceptional cases, and LuValle certainly fit that mold. Ultimately he received a Rosenwald scholarship for both the 1937-38 and 1938-39 school years; by his own reckoning, he would not have been able to complete his doctoral training without this support.


While at Caltech, LuValle took several courses taught by Pauling, who had already risen to a high level of prominence within the academy. (LuValle later admitted to worshiping him during this time.) Pauling guided and mentored LuValle throughout his three-year “theoretical and experimental attack on the problem of resonance in conjugated unsaturated organic molecules containing oxygen.” Pauling viewed the project as very promising and was confident in his student’s ability to carry out the research.

In 1940 LuValle completed his Caltech Ph.D. in Physical Chemistry while also claiming a minor in Mathematics. His dissertation, titled “An Electron Diffraction Investigation of Several Unsaturated Conjugated Molecules,” detailed his research on the structure and deeper function of vinyl ether and oxalyl chloride, two important compounds that, at the time, had not been satisfactorily investigated. In his study of these two molecules, LuValle concluded that the conjugating power of two carbon-oxygen double bonds was equivalent to the conjugating power of two carbon-carbon double bonds.

LuValle’s laboratory work also revealed that thermolysis investigations could be conducted at much lower temperatures than had been used previously. In his Caltech research journal – which is now deposited in the Ava Helen and Linus Pauling Papers – LuValle likewise proposed a new slate of investigations using x-ray and denaturation techniques to study the structure of proteins.

Following U.S. entry into World War II, LuValle was invited by a member of the National Defense Research Committee to join a group of scientists who were actively working to develop a suite of weapons for near-term use. LuValle felt that his potential contributions to these efforts were absolutely necessary to helping insure the safety of the American people during World War II. In 1942 LuValle also returned briefly to Caltech to work with Pauling on war-related research, the nature of which neither was permitted to disclose. Based on his previous collaborations with Pauling, it is likely that LuValle contributed to the development of the blood plasma substitute oxypolygelatin, which was one of many government-funded projects that Pauling led during the war years.


After leaving Caltech for the second time, LuValle maintained a regular correspondence with his former mentor, discussing current research, ideas for the future, and personal matters as well. Pauling, who addressed LuValle as “Jimmy,” wrote many letters of recommendation for his former student, describing him as “reliable, industrious and conscientious,” blessed with an agreeable personality, and likely to “become a very useful member of a scientific organization.”

It did not take long for LuValle to find work. He landed first at Fisk University, a Historically Black College located in Nashville, Tennessee. However, he was quickly disappointed to discover how underdeveloped the Chemistry department was and also to learn that Fisk was facing major budget cuts for the following year. The school was eager to keep LuValle and offered him a raise in pay – from an annual salary of $1,800 to $1,900 – to stay, but LuValle ultimately decided to move north to Rochester, New York in order to work for the Eastman Kodak Company. Eastman Kodak proved to be a good fit, and during his time there LuValle made many significant advancements in the field of photochemistry.

In the years that followed, LuValle bounced back and forth between academia and the private sector as he pursued a wide array of career opportunities. Following Eastman Kodak, he worked as a lecturer at Brandeis University, and later conducted research at Technical Operations Inc., Fairchild Space and Defense Systems, Microstatics Laboratory, and the Palo Alto Research Center.

Pauling continued to support LuValle throughout all of these changes, writing letters of recommendation that commended his friendliness, industry, and willingness to work with everyone, and making particular note of his facility in the lab and his skill as an instructor. In these letters, Pauling often wrote that LuValle had compared favorably with a group of “extraordinary students” who had also attended Caltech during his years of association.


For the decade leading up to his retirement in 1984, LuValle served as Director of Undergraduate Chemistry Laboratories at Stanford University, a position that allowed him to develop summer programs for students of color interested in scientific fields. In 1987 he was nominated for the Caltech Distinguished Alumni Award by a Stanford colleague, chemistry professor David Mason, who lauded LuValle’s contributions to the field of photochemistry. In his nomination letter, Mason noted that

During the War and through 1953, [LuValle] was a top flight Chemist at Eastman Kodak and his research led to many innovations in the development and perfection of Kodachrome and Kodacolor processes. He holds important basic patents in the applied photochemical field together with Eastman Kodak.

Once again, Linus Pauling was happy to contribute a secondary letter of support for his former student, who would ultimately receive the award alongside four other prominent Caltech alumni: Morris Muskat (Gulf Oil Company), Stanley Pace (General Dynamics Corporation), Alvin Trivelpace (U.S. Department of Energy) and John Waugh (Massachusetts Institute of Technology).


On January 30, 1993, James LuValle passed away, the victim of a heart attack suffered in Te Anau, New Zealand. At the time of his death, LuValle was on holiday with his wife, Jean – a fellow chemist – and his three children, John, Michael, and Phyllis, all of whom pursued careers in the sciences. Over the course of his career, LuValle published about thirty-five technical papers and came to hold eight patents, and his legacy as an Olympian and major figure in photochemistry is utterly unique. Today, the campus student center at UCLA is known as the James E. LuValle Commons, in recognition of LuValle’s career and his contributions to student life at his alma mater.