Ahmed Zewail, 1946-2016

zewail-lab

Earlier this month, on Tuesday, August 2, Ahmed H. Zewail, a world renowned Nobel laureate chemist and Caltech’s Linus Pauling Professor of Chemical Physics, died at 70 years of age. As a major figure in the field of chemistry and a personal friend to Linus Pauling, Zewail’s passing is honored and mourned here at Oregon State University.

Zewail was born and raised in Egypt, where he received his bachelor’s and master’s degrees at Alexandria University before going on to attain his PhD at the University of Pennsylvania. After completing his doctorate in 1974, Zewail joined the faculty at the California Institute of Technology, where he remained for the next forty years.

During his tenure at Caltech, Zewail’s team became the first to directly observe the breaking and formation of atomic bonds, also known as transition states. This was initially accomplished in 1987, but the team’s technique had a long way to go before it could be considered revolutionary, to say nothing of routine. Nonetheless, Caltech saw the potential for greatness in Zewail’s work and, in 1990, it named him the first Linus Pauling Professor of Chemical Physics, a newly endowed chair. Upon receiving this accolade, Zewail wrote to Pauling immediately, confiding, “You are one of my personal heroes in science, and I am honored to be holding your chair.” Zewail remained in this position until his passing, frequently stating that it was an honor just to be compared to Linus Pauling, and that he hoped to do justice to that comparison. Important above all else, however, was that Linus Pauling considered him a friend.


1991i.211

Zewail and Pauling at the 90th birthday event, Caltech, February 1991.

Zewail played a major role in revitalizing the relationship between Caltech and Pauling during the 1980s and early 1990s. Pauling had left the Institute in 1963 amidst increasingly strained circumstances surrounding his work for peace and his stance against nuclear testing. From 1986 through 1993, Zewail was in regular contact with Pauling, helping to arrange his visits to the Caltech campus for a variety of lectures dedicated to Pauling’s work and time there. In 1986, Caltech’s eighty-fifth birthday “Salute to Linus Pauling” afforded Zewail the opportunity to present Pauling with a portrait depicting his face on the body of a Pharaoh, captioned “King of Kings of Chemistry.”

1986i.244

“King of Kings in Chemistry”

Later events in which Zewail was involved included Caltech’s first Linus Pauling Lecture in 1989, a second Linus Pauling lecture in 1991, and an additional 1991 symposium on the chemical bond that was held to mark Pauling’s 90th birthday. A year later, Zewail produced an edited volume of the papers presented at this conference, The Chemical Bond: Structure and Dynamics, a work which was the source of much pleasure for Pauling in his final years.

Over time, the two became close friends. Christmas cards were routinely exchanged and Zewail even sent Pauling an announcement on the occasion of the birth of his son. In 1992, Zewail likewise provided Pauling with a manuscript documenting his team’s first successful recording of ultrafast electron diffraction from molecules, a breakthrough that enabled increasingly accurate “pictures” of transition states that had never before been observed by chemists. Pauling responded with praise: this was “a fine piece of work” that would make possible the exploration of previously inaccessible frontiers in the fields of chemistry, physics, and biology.

Zewail won the Nobel Prize for Chemistry in 1999. In continuing to seek out methods to observe transition states, he had pioneered a technique that used laser pulses akin to strobe lights to record the colors of light emitted and absorbed by molecules. This technique was termed “femtosecond spectroscopy.” While chemistry had hitherto inferred specifics of reactions based on the material input and output of a given chemical reaction, Zewail’s work now enabled scientists to see specific changes at the molecular level for the first time.


1991i.212i

Crellin and Linus Pauling with Lynne Martinez and Ahmed Zewail, 1991.

To fully appreciate Zewail’s contributions, one must understand that the breaking and shifting of chemical bonds that he worked to observe typically occur in a space of 10-100 femtoseconds, each femtosecond being a millionth of a billionth of a second. Zewail explained the scale of these observations as follows:

Here is the journey in time… 12 or 15 billion years of the Big Bang, and then you come down to our lifespan, which is about 100 years or so – your heart beats in one second. But to go from here [present day] to there [Big Bang] is about 1015, and I am going to take you from the heart into a molecule inside the heart, or eye specifically, and you have to decrease by 15 orders of magnitude to see the beats of this molecule, as you see the beats of your heart. The timescale is fast… if you go from this age of the universe, and you count back from the age of the Earth to the human lifespan to your heart (1 second), and then you go to the microscopic world (sub-second), into how molecules rotate, vibrate, and how the electrons move… In this whole microscopic world here, we reach 10-15 or so seconds, where on the opposite end you reach 1015.

This is the end of time resolution for chemistry and biology, because if you look here, even molecules that are linking undergo collisions on a time scale of 10-14 seconds. A molecule can break a bond and make a bond on this time scale as well. The eye has a molecule called rhodopsin which divides and allows you to see, and that happens in 200 femtoseconds. The way we get photosynthesis to work, and the electron to transfer inside the green plant, is on the order of femtoseconds. So this is the fundamental time scale, and if we were to understand the dynamics of the chemical bond we must understand this time scale.

In other words, the timespan of one heartbeat is to the age of the universe as the timespan of one molecular bond breaking is to the length of an elderly human’s lifespan; the time required by the event is so infinitesimal as to be practically nonexistent. Yet Zewail found that it was at this scale – the “one heartbeat” of a single bond breaking or forming – upon which our entire reality is formed from its molecular foundations up. Zewail showed that events occurring in femtoseconds are the basis for all the occurrences that we take for granted in everyday life.

The ability to observe these events created a new field of study called femtochemistry. And while femtoscopic experiments provide a method for researchers to determine the amounts of energy that hold together different types of chemical bonds, their impact is not limited to chemistry alone. Since the time of Zewail’s breakthroughs in the 1980s and 1990s, many practical applications have emerged from femtoscopic research, including a better understanding of the mechanics of human vision and of the properties of photosynthesis in plants.  Today, most femtosecond lasers are sold not to chemists or physicists, but to hospitals, because of their ability to image very fine tumors. Likewise, in the technology sector, femtosecond pulses can be used to lift material on the micron scale without dissipating heat into a microchip.


zewail

In more recent years, Zewail was named Director of the National Science Foundation’s Laboratory for Molecular Sciences, and was nominated by President Barack Obama as both the first United States Science Envoy to the Middle East as well as a member of the President’s Council of Advisors on Science and Technology. In February, Caltech held a symposium titled “Science and Society” to celebrate Zewail’s 70th birthday. At the event, the honoree spoke of his efforts to expand scientific research initiatives in his native country and stressed the importance of holding to a scientific vision. Advocating as he was for education and peace across international borders, Zewail’s message was, without doubt, one that would have made Linus Pauling proud.

On February 28, 2001, on what would have been Linus Pauling’s one-hundredth birthday, Zewail delivered the keynote address at the Linus Pauling Centenary Celebration, a day-long symposium organized and hosted by Oregon State University. In his talk, “Timing in the Invisible,” Zewail reflected on the rapid changes that had arisen in the field of chemistry as a result of breakthroughs in femtoscience. In 1950, when asked what he thought chemists would be studying fifty years on, Pauling responded: “We may hope that the chemists of the year 2000 will have obtained such penetrating knowledge of the forces between atoms and molecules that he will be able to predict the rate of any chemical reaction.” Zewail’s work, in effect, accomplished this ambition. It has given chemists insight into the dynamics of chemical bonding, and thus greater predictive knowledge of the forces and rates of these dynamic changes.

Dr. Ahmed Zewail, who held the Linus Pauling chair at the California Institute of Technology for so long, was indeed the right scientist to carry Pauling’s legacy forward. Now, as that chair sits empty, Zewail is remembered and missed for all that he accomplished as a scientist, as an advocate for social change, and as a friend.

Pauling in Memorium

lpjr-1994

Linus Pauling Jr. speaking at his father’s memorial service, August 29, 1994.

[Part 4 of 4]

On August 29th, 1994, a memorial service planned by Pauling’s children and his long-time assistant Dorothy Munro was held at Memorial Church on the campus of Stanford University. Many people spoke, including Linus Pauling Institute of Science and Medicine administrator Steve Lawson, Oregon State University president John Byrne, and scientific colleagues Frank Catchpool and Verner Schomaker.

Remembrances were likewise offered by close friends and family. Pauling’s youngest son Crellin spoke movingly, while also offering comments written by his brother Peter, who was living in Wales at the time and was unable to travel to attend the memorial. Pauling’s daughter Linda, and eldest son Linus Jr., also gave their heartfelt goodbyes to their father. Steve Rawlings, the ranch hand who had cared for Pauling for the past several years, spoke of the bond that they had formed. Four of Pauling’s grandchildren – Cheryl and David Pauling, and Barky and Sasha Kamb – recalled fond memories of their Grandpa.

The memorial program featured a quote to remember Pauling by, one taken from his 1958 book, No More War. It read:

Science is the search for truth- it is not a game in which one tries to beat his opponent, to do harm to others. We need to have the spirit of science in international affairs, to make the conduct of international affairs the effort to find the right solution, the just solution of international problems, not the effort by each nation to get the better of other nations, to do harm to them when it is possible. I believe in morality, in justice, in humanitarianism.


lpsc.22

Linus Pauling Jr. speaking at the grand opening of the Linus Pauling Science Center, October 19, 2011.

With its director of research and namesake now gone, the reigns at LPISM were taken up by Linus Pauling Jr. In so doing, Linus Jr. sought mainly to secure his father’s long-term legacy by moving his beloved but financially unstable institute from its location in Palo Alto, and to associate it with a prestigious academic institution, where it might find new and greater successes.

Along with Lawson and the Institute’s Board of Trustees, Linus Jr. entered into conversations with a number of universities where they believed that LPISM’s orthomolecular mission might find support. At the same time, the Institute benefited greatly from a large number of memorial donations and bequests made in honor of Pauling. Ultimately, an agreement was struck between the Institute and Oregon State University, which offered to match those contributions.

This resulting endowment in hand, a new director, Balz Frei, was brought on board and, at its new home in Corvallis, the Linus Pauling Institute was reborn. While still able to engage in the orthomolecular research that Pauling had always envisioned, the move to OSU offered the Institute the opportunity to open up new lines of research in other areas of human health. When Linus Jr. gave the keynote address at the grand opening of OSU’s brand new Linus Pauling Science Center in 2011, he spoke of this evolution.

I’ve appreciated other people’s recognition of (my father’s) capabilities and endeavors, and done what I can to increase that appreciation and recognition. My whole investment in LPI was part of that too, recognizing my father’s contribution to society…and wanting to make sure in some way that he didn’t get lost in the sands of time. What has happened has pleased me. I don’t think there’s anything I can do to personally do more than I have done. I don’t think I’m going to try… I’m very appreciative of those who have dedicated themselves to the continuation of my father’s reputation. I feel that I can rest assured that he will not be forgotten.


lp cemetary marker

Linus Pauling’s humble marker at the Oswego Pioneer Cemetery, as photographed in 2009.

Before he died, Pauling made clear his wish to be cremated and to have his ashes, along with those of his wife, interred in Lake Oswego, Oregon at the Pioneer Cemetery where his parents were buried. In 1994, a cenotaph – which is a marker honoring a person whose remains are elsewhere – was placed in the family plot by Pauling’s sister, Pauline. Pauling’s ashes remained with Ava Helen’s among family in California until 2005, when they were finally moved to Oregon and placed alongside those of Pauling’s parents, Herman and Belle.

In 2013, an Oregon resident named Jean Crellin Ashby took her mother to see Linus Pauling’s grave at Pioneer Cemetery. Ashby is the granddaughter of Edward Webster Crellin, a mentor and colleague of Linus Pauling’s at Caltech, and the man after whom Pauling named his youngest son. Standing over Pauling’s marker, Ashby thought about how her grandparents were buried in Pasadena. Since she was unable to easily visit their graves, given the considerable distance, Ashby decided that honoring Pauling’s family in Lake Oswego would also serve to honor her own. Subsequently, Ashby contacted cemetery administrators and filed the appropriate paperwork to become the official caretaker for the Pauling plot, which she and her family still maintain today.


It is Pauling’s legacy that we honor on this, the twenty-second anniversary of his passing. And what better way to reflect on that legacy than to return to the diary entry that Pauling wrote when he began the history of his life at the age of 16. In it, Pauling said that his history was not intended to be merely a life’s story. Rather, it was to be a reflection on good times had in his passage through this “vale of tears”

Often, I hope, I shall glance over what I have written before, and ponder and meditate on the mistakes that I have made—on the good luck that I have had—on the carefree joy of my younger days; and pondering, I shall resolve to remedy my mistakes, to bring back my good luck, and to regain my happiness.

1918i29

The End of Pauling’s Life

1993i.22

Linus Pauling giving an interview at Deer Flat Ranch, September 1993.

[Part 3 of 4]

After a sigmoidoscopy in 1993 revealed that Linus Pauling’s rectal tumor was still growing, the reality set in that he was not likely to survive his cancer. It was at this point that Pauling began to seriously consider which of his possessions should be turned over to family and which should be transferred to his archival collection at Oregon State University.

The same year, it was decided that it would be a good idea to arrange a special symposium, sponsored by Caltech and the Linus Pauling Institute of Science and Medicine, on or near his 93rd birthday. Speakers would consist of former graduate students and postdocs. Pauling had once imagined that an event of this sort would be appropriate for his 100th year, a birthday that he had fully intended to achieve.

Throughout 1993, Pauling strived to be as active as possible, giving interviews in person or over the telephone, and entertaining many visitors at Deer Flat Ranch. At the end of May, Pauling and a collection of friends, family, and co-workers also gathered to celebrate the Linus Pauling Institute of Science and Medicine’s 20th anniversary.

However, as time move forward and his illness worsened, Pauling attended to his scientific writing and correspondence at a decreasing rate. On two occasions, he returned to Palo Alto to attend scientific meetings, giving a short talk at one, and the last scientific paper that he authored himself was written in November-December of 1993. Much of his time was taken up with scheduled visits to his doctors in San Luis Obispo and Cambria, or simply resting at Deer Flat Ranch, his sanctuary on the Pacific Ocean.


1994i.8

Pauling delivering his last lecture at the International Symposium on Biological NMR, Stanford University, March 25, 1994.

In January 1994, Pauling’s physicians decided that steps needed to be taken to shrink his tumor, and Pauling relented to a course of chemotherapy, during which he attributed his lack of negative side effects to his taking routine megadoses of vitamin C. When Pauling learned that the cancer had spread to his liver, however, his hope to live to be one-hundred years old were lost. He stopped taking vitamin C completely, and gave up writing in his research notebook – a brief note about his work on nuclear structure appears in January and the pages after it are blank.

During the last months of his life, Pauling met with friends and family, while also attending to some less pleasant business. LPISM administrator Steve Lawson and Linus Pauling, Jr. journeyed to Deer Flat Ranch during this time to mediate ongoing litigation between the Institute and Matthias Rath, who had initiated a lawsuit against his former employer. Even at the deposition, which given from his bed, Pauling welcomed Rath warmly.

Pauling’s final public appearance came on June 19, 1994, at the conference that he had requested be organized a year earlier, and which his son Crellin had arranged. This event, which was ultimately hosted by The Pacific Division of the American Association for the Advancement of Science, was titled “A Tribute for Linus Pauling” and was held at San Francisco State University. Pauling’s ranch hand Steve Rawlings attended as Pauling’s nurse, bringing him into the assembly in a wheelchair. Upon entering however, Pauling stood and insisted on walking into the room, receiving applause from the gathering as he made his way to his chair. An array of speakers including Harden McConnell, Alexander Rich, Frank Catchpool, Richard Kunin, and Crellin Pauling delivered moving talks detailing Pauling’s major contributions to science, human health, and world peace.


1994i.20

A final family photo session, on Pauling’s 93rd birthday. Seated to Pauling’s left is his sister, Pauline, who lived to the age of 101.

Pauling’s daughter Linda was at Deer Flat Ranch with her husband and children on August 18, 1994, when Pauling suffered a stroke that left him comatose. Pauling’s sons Crellin and Linus Jr. arrived the next day and were both at the ranch with him on the evening that he died. His passing came at the end of a beautiful summer day, as the sun was just beginning to set over the Pacific. At the end of his life, Pauling wore on his wrist an opal bracelet that he had once given to his late wife, Ava Helen, as a gift.

In Palo Alto, Steve Lawson had just sat down for dinner when he received a call from Linus Pauling Jr., informing him of the sad news. Immediately, Lawson got in his car and went back to the Institute, faxing pre-written obituaries to the media. Copies went to CBS, the New York Times, NBC, CNN, the San Francisco Chronicle, the San Jose Mercury-News, and half a dozen more outlets. But by the time that Lawson had faxed the third news organization, the phone started ringing. He later recalled

In those days, we had an old fashioned phone system where you could see a number of little pegs that would light up for an incoming line, and I think there were as many as six incoming lines. Before long every light was lit and blinking: it was the New York Times, it was CBS, it was everybody under the sun that wanted statements.

Pauling’s passing was reported the next day through packages of stories in the New York Times and the Los Angeles Times that were immediately picked up by news services and syndicated around the globe. The Pasadena Star-News ran its own article a few days later, as did the Medical Tribune and the scientific journal Nature. Personal letters flooded in to the Pauling children and the Institute from every corner of the globe: France, the United Kingdom, Russia, Japan, Italy, Australia, South America, the Philippines, and all across the United States. Universities and organizations worldwide, including Caltech and the American Association for the Advancement of Science, all sent heartfelt letters conveying their sadness at the loss of a great man.


1994n3.10

In the months and years that followed, Pauling’s life was honored around the world in a wide variety of ways. The Alpha Chi Sigma chemistry fraternity, which is based in Indianapolis, dedicated the Library Room of its house to Pauling. A fossil leaf from an extinct species of citrus tree was also named after him: Linusia paulinga. 

Later on in 1994, shortly after Pauling’s death, Steve Lawson started receiving unmarked packages in the mail, containing nearly exact replicas of Pauling’s Nobel Prizes. A week or two after they had arrived, Pauling’s son Peter, then living in Wales, called and cryptically asked if Lawson had received anything “unusual” in the mail. As it turned out, Peter had gone to the Nobel Academies and had duplicate medals struck in an alloy for family members and for the Institute to hold as keepsakes.

Later still, with the help of Pauling’s daughter Linda and officials at Oregon State University, Lawson and others planned a Linus Pauling Exhibition, which was sponsored by the Japan-based peace organization, Soka Gakkai International. Intended as a mechanism to educate the public about Pauling’s work and to introduce school children to Pauling as a role model, the exhibit focused on all facets of Pauling’s career as a humanitarian, as an activist, as a scientist, and as a medical researcher. Over the course of several years, millions of people visited the exhibit in Europe, Japan, and many locations in the United States, including Washington D.C., San Francisco, and Boston. The exhibit was created by a team of designers who, when it had finished touring, donated all of its elements and infrastructure to Oregon State University.

Pauling’s Cancer

1992n2.11

Medical Tribune, September 10, 1992.

[An examination of the final years of Linus Pauling’s life. Part 2 of 4.]

In February 1992, Linus Pauling announced publicly that he had cancer. His critics responded with sentiments that were, at times, distinctly unsympathetic. In their view, since Pauling had been advocating vitamin C as a preventative treatment for cancer for years, his diagnosis undermined those decades of work. Pauling retorted that most elderly men develop hyperplasia or cancer in their prostates, often by age 70. Pauling believed it was quite likely, although not provable, that his high intake of vitamin C delayed the inevitable by decades.

As Pauling continued to struggle with the limitations that his illness placed upon him, his new caretaker, ranch-hand Steve Rawlings, became an important part of his life. Rawlings did a lot of the day-to-day work of providing for Pauling while he was ill, a time period during which Pauling increasingly sought out the solace and solitude of his isolated home on the Pacific Coast. Linus Pauling Institute of Science and Medicine (LPISM) administrator Steve Lawson would later reflect on the importance of Pauling’s Big Sur residence at Deer Flat Ranch during the last few years of his life. In a 2011 interview, Lawson explained,

When he was in Palo Alto, Pauling’s time was sought by many people for many different reasons: old friends, colleagues, the public, the media. When he retreated to Deer Flat Ranch, he removed himself from that. I think he really loved that time alone down there. I know that he liked to watch some programs on T.V., some serialized programs. He read quite a lot. He loved to read mystery books. He was a rare individual in that there was really no division between what he did recreationally and what he did professionally. He was a scientist through and through, and derived pleasure from working on scientific problems. Often times if you go into someone’s bathroom, you’ll find a Prevention magazine, a Reader’s Digest, or Entertainment Weekly, or Time, or the newspaper. Pauling’s bathroom was stacked with scientific journals. He wasn’t physically vigorous [by the early 1990s], but he certainly didn’t seem fatigued.

With his time becoming increasingly precious, Pauling’s coworkers, friends, and family all felt that he should do what he most wanted to do with his days, and this had always been to focus on science. Freed from the responsibility of running the LPISM’s day-to-day operations, Pauling continued to work at Deer Flat Ranch in spite of his worsening health problems.

Of particular interest was the fact that, stricken with cancer himself, Pauling’s scientific fascination with the disease only intensified. Rather than remove himself from ongoing cancer research as his disease advanced, he instead committed even more fully to this cause in his final years. In particular, Pauling became increasingly interested in non-toxic methods of cancer therapy; methods, in other words, that were far less stressful on the body than are radiation or standard chemotherapy regimens.

In a paper co-authored with Drs. David Knight and Abram Hoffer, he worked to determine survival rates among over 2,000 cancer patients receiving high doses of vitamin C and other nutrients. He even flew to Tulsa, Oklahoma in October 1992 for a conference on alternative treatments of cancer. He likewise continued to work to convince American physicians of the value of vitamin C and lysine in preventing and treating heart disease, a notion that was gradually beginning to gain small slivers of recognition in the medical community.


1992i.023

Privately, Pauling was waging a personal war on his disease, exploring avenues of immunotherapeutic treatment that were unorthodox in the medicine of the time but which have, in recent years, begun to show great promise.

In a letter to medical writer and cancer consultant Ralph Moss, Pauling detailed a therapy involving autologous anticancer antigen preparation, or AAAP, of which he was somewhat skeptical but nonetheless interested in pursuing further. Working with friends and colleagues at Stanford Medical School to raise monoclonal antibodies against his prostate cancer cells, Pauling ultimately conducted what amounted to exploratory and self-experimental science to discern the potential value of AAAP.

Pauling’s first exposure to the idea of AAAP came from the work of Duncan McCollester, a medical doctor based in Irvington, New York, who advocated for a form of “Active Specific Immunotherapy.” This treatment involved the use of a manganese phosphate gel that was mixed with isolated portions of tumor tissue in which tumor antigens had been converted to a form capable of stimulating a cancer-destroying immune response in the patient upon re-administration on the forearm or thigh. McCollester dedicated a book on the subject to Pauling, even as he was struggling to receive FDA approval for the treatment.

David Stipp, a reporter for the Wall Street Journal, reported in August 1992 that a similar medical treatment had been developed by Cellcor, Inc. of Newton, Massachussetts. Cellcor offered customers a treatment for kidney cancer in which a patient’s own white blood cells were extracted, treated in such a way as to make them attack tumor cells, and then reintroduced into the patient’s cells. Known as autolymphocyte therapy, or ALT, the treatment had been available commercially in Atlanta, Boston, and Orange County, California since around 1990. However, at the time, medical officials disputed the efficacy of Cellcor’s anti-cancer therapy, arguing that not enough data had been collected to substantiate the company’s claims.


By July 1992, Pauling had decided to move forward with AAAP treatment, the ultimate goal being a vaccine that would combat his own illness while also providing useful data for the science of the future. Subsequently, a 1 gram section of cancerous tumor tissue that had been surgically removed from Pauling’s body was shipped to McCollester’s lab in New York. Upon entering the operation, Pauling’s surgeon had advised him that his entire tumor should be removed, rather than a small section. Pauling refused this request, arguing that a full resection would prevent him and others from observing the effectiveness of the AAAP treatment. In other words, rather than focusing on the fact that his own life was on the line, Pauling was still operating, first and foremost, in the mode of the scientist: he was running an experiment in which he himself was a test subject, and the stakes could not have been higher. In Pauling’s mind there were plenty of reasons for optimism.


safe4.053_14-049-900w

Pauling notes his first AAAP injection on October 23, 1992.

By October, scientists at Stanford University, led by Dr. Ronald Levy, had successfully boosted the immune systems of a small group of B-cell lymphoma patients using a vaccine that had been genetically engineered from the patients’ own tumor tissues. In two of these nine patients, tumors vanished completely.

In generating the vaccines for each individual patient, the Stanford scientists created clones of the cancerous B-cells from each subject, and then separated out specific proteins – known as receptors – from the outer coatings of the B-cells. Using genetic engineering techniques, the scientists then added other proteins that boosted the immune system and created a synthetic version of the engineered receptors. The result was a tailor-made vaccine created from the B-cell receptors that used each patient’s immune system to attack cancer cells.

Pauling’s confidence in his anti-cancer antigen treatment was likewise elevated by other immunotherapy techniques then being developed by a team at the National Cancer Institute, as headed by Dr. Steven Rosenberg, Dr. French Anderson, and Dr. Michael Blaese. However, these studies were all specific to skin cancer, and were carried out on patients already in remission and receiving chemotherapy, or on patients with very small tumors. Pauling, by contrast, was already afflicted with advanced prostate cancer by the time that his condition was discovered, and he had not yet accepted any form of radiation therapy.

From October 1992 on, Pauling almost exclusively used the AAAP vaccine and vitamin C to treat his cancer. The vaccine traveled from McCollester’s lab in New York to a willing physician in California who had agreed to administer Pauling with the suggested injections- anywhere from 0.2 to 0.65 ml of vaccine a few times monthly. Pauling continued to receive these injections, which routinely caused tenderness and swelling, until January 1994, about seven months before he died.

Pauling’s Final Years

1917i.25

Pauling posing at lower campus, Oregon Agricultural College, ca. 1917.

[An examination of the end of Linus Pauling’s life, part 1 of 4]

In 1917, at sixteen years of age, Linus Pauling wrote in his personal diary that he was beginning a personal history. “My children and grandchildren will without doubt hear of the events in my life with the same relish with which I read the scattered fragments written by my granddad,” he considered.

By the time of his death, some seventy-seven years later, Pauling had more than fulfilled this prophecy. After an extraordinarily full life filled with political activism, scientific research, and persistent controversy, Pauling’s achievements were remembered not only by his children, grandchildren and many friends, but also by an untold legion of people whom Pauling himself never met.

Passing away on August 19th 1994 at the age of 93, Pauling’s name joined those of his wife and other family members at the Oswego Pioneer Cemetery in Oregon. What follows is an account of the final three years of his life.


 

1991i.217

Linus Pauling, 1991.

In 1991, Pauling first learned of the cancer that would ultimately take his life. Having experiencing bouts of chronic intestinal pain, Pauling underwent a series of tests at Stanford Hospital that December. The diagnosis that he received was grim: he had cancer of the prostate, and the disease had spread to his rectum.

Between 1991 and 1992, Pauling underwent a series of surgeries, including the excision of a tumor by resection, a bilateral orchiectomy, and subsequent hormone treatments using a nonsteroidal antiandrogen called flutamide. During this time, Pauling also self-treated his illness with megadoses of vitamin C, a protocol that he favored not only for its perceived orthomolecular benefits, but also as a more humane form of treatment than chemotherapy or radiation therapy.

Pauling’s interest in nutrition dated to at least the early 1940s, when he had faced another life-threatening disease, this time a kidney affliction called glomerulonephritis. Absent the aid of contemporary treatments like renal dialysis – which was first put into use in 1943 – Pauling’s survival hinged upon a rigid diet prescribed by Stanford Medical School nephrologist, Dr. Thomas Addis.  At the time a radical approach to the treatment of this disease, Addis’ prescription that Pauling minimize stress on his kidneys by limiting his protein and salt intake, while also increasing the amount of water that he drank, saved Pauling’s life and led to his making a full recovery. Though his famous fascination with vitamin C would not emerge until a couple of decades later, Pauling’s nephritis scare instilled in him a belief that dietary control and optimal nutrition might effectively combat a myriad of diseases. This scientific mantra continued to guide Pauling’s self-treatment of his cancer until nearly the end of his life.

Pauling also believed that using vitamin C as a treatment would, as opposed to chemotherapy, allow him to die with dignity. Were his condition terminal and his outlook essentially hopeless, Pauling felt very strongly that he should be permitted to pass on without “unnecessary suffering.” Pauling’s wife, Ava Helen, had died of cancer in December 1981. She too had refused chemotherapy and other conventional approaches for much of her illness, a time period during which Linus Pauling had helped his wife the only way he knew how: by administering a treatment involving megadoses of vitamin C. This attempt ultimately failed and, by his own admission, Pauling never really recovered from his wife’s passing.

Nonetheless, Pauling continued to lead research efforts to substantiate the value of vitamin C as a preventive for cancer and heart disease in his capacity as chairman of the board of the Linus Pauling Institute of Science and Medicine (LPISM). By the time of his own diagnosis in 1991 however, the Institute was in a desperate financial situation, several hundred thousand dollars in debt and lacking the funds necessary to pay its staff.


 

lawson-lpj

In 1992, while he recovered from his surgeries and managed his illness, Pauling continued to act as chairman of the board of the LPISM. No longer able to live entirely on his own, he split his time between his son Crellin’s home in Portola Valley, California, and his beloved Deer Flat Ranch at Big Sur. When at the ranch, Pauling was cared for in an unofficial capacity by his scientific colleague, Matthias Rath. Pauling was first visited by Rath, a physician, in 1989, having met him years earlier in Germany while on a peace tour. Rath was also interested in vitamin C, and Pauling took him on as a researcher at the Institute. There, the duo collaborated on investigations concerning the influence of lipoproteins and vitamin C on cardiovascular disease.

Not long after Pauling’s cancer diagnosis, a professor at UCLA, Dr. James Enstrom, published epidemiological studies showing that 500 mg doses of vitamin C could extend life by protecting against heart disease and also various cancers. This caused a resurgence of interest in orthomolecular medicine, and it seemed that Pauling and Rath’s vision for the future of the Institute was looking brighter.

As it happened, this bit of good news proved to be too little and too late. LPISM had already begun to disintegrate financially, its staff cut by a third. The Institute’s vice president, Richard Hicks, resigned his position, and Rath, as Pauling’s protégé, was appointed in his place. Following this, the outgoing president of LPISM, Emile Zuckerlandl, was succeeded by Pauling’s eldest son, Linus Pauling Jr. Finally Pauling, his health in decline, announced his retirement as chairman of the board and was named research director, with Steve Lawson appointed as executive officer to assist in the day-to-day management of what remained of the Institute.

One day prior to his retirement as board chairman, Pauling signed a document in which he requested that Rath carry on his “life’s work.” Linus Pauling Jr. and Steve Lawson, however, had become concerned about Rath’s role at the Institute, and particularly on the issue of a patent agreement that Rath had neglected to sign. Adhering to the patent document was a requirement for every employee at the Institute, including Linus Pauling himself. When pressed on the issue, Rath opted to resign his position, and was succeeded as vice president by Stephen Maddox, a fundraiser at LPISM.

After this transition, Pauling met with Linus Jr. to discuss the Institute’s dire straits. Pauling’s youngest son, Crellin, had also became more active with the Institute as his father’s illness progressed, in part because he had been assigned the role of executor of Pauling’s will. Together, Crellin, Linus Jr., and Steve Lawson struggled to identify a path forward for LPISM. Eventually it was decided that associating the Institute with a university, and focusing its research on orthomolecular medicine as a lasting legacy to Pauling’s work, would be the most viable avenue for keeping the Institute alive. The decision to associate the organization with Oregon State University, Pauling’s undergraduate alma mater, had not been made by the time that Pauling passed away.

Another View of the Pauling Models

This past spring, Thomas Brennan, a photographer and the chair of Art and Art History at the University of Vermont, paid us a visit to capture his own set of images of Pauling’s models. Brennan’s research concerns the history of symbolic representation in the history of science with three-dimensional modelling, work which has taken him to institutions and repositories including the Laboratory of Molecular Biology at Cambridge, the Museum of the History of Science at Oxford, the Museum of Science in London, and the M.I.T. Museums.

Brennan’s photographs of Pauling’s models were captured using a low-light technique that he has used in the past for a project that he calls “Collecting Shadows.” On his website, Brennan provides this bit of background for the series:

Scotophorus pro phosphoro inventus, written by Johann Schulze in 1727, was the origin for experiments with light-based imaging that would lead to William Henry Fox Talbot’s experiments with camera-less photogenic drawings. The ability to record ‘marks of light’ without a lens, first explored in the eighteenth and nineteenth centuries, provides the foundation for my series of light-based images of museum objects from the history of science titled Collecting Shadows.

A sampling of the images that Brennan captured during his visit to the Pauling Papers is included here.

 

A View of Pauling’s Models

In 2010, Oren Eckhaus, a photographer based in New York City, visited our facility to photograph several of the molecular models that remain extant in the Ava Helen and Linus Pauling Papers. He did so in support of Jane Nisselson’s documentary-in-progress, “Unseen Beauty: The Molecule Imagined,” which she was researching with support from the OSU Libraries Resident Scholar Program.

Now Eckhaus is preparing several of his photographs for display in an upcoming art exhibition, and he was kind enough to share a handful of the images with us. He also provided a short artist’s statement:

The idea of photographing the molecular models came as an add-on visual assistant to a movie (that is still in the making) who’s main subject is to show the representation of pure scientific ideas as real tangible forms.

In my profession, along with being a fine art photographer, I also document objects of art for museums and art collectors. Upon seeing the models, I was struck by their beauty. They are important both as art pieces and early science tools.

Therefore, the approach of photographing the pieces was a mix of an artistic and documentary point of view, showing the original scientific intent, along with their artistic beauty.

A book of 32 molecule images is in the making.

Click on any image to open the gallery and to learn more about the molecular models highlighted within.

 

Follow

Get every new post delivered to your Inbox.

Join 78 other followers