The Gibbs Medal

1946h.1-obverse-400w

On June 14, 1946, Linus and Ava Helen Pauling traveled to Chicago to attend a dinner recognizing Linus Pauling as the thirty-fifth recipient of the Josiah Willard Gibbs Medal, an award given annually to the most prominent chemists and chemical engineers in the world. The Gibbs Medal was the second major prize bestowed upon Pauling by the American Chemical Society, coming some fifteen years after his receipt of the Irving Langmuir Prize in 1931.

By 1946 Pauling was widely considered to be among the world’s leading theoretical chemists. At just forty-five years old, he had already published more than 150 papers as well as three books. His connection to the American Chemical Society was strong as well. A member since 1920 – he joined before completing his bachelor’s degree in Chemical Engineering at Oregon Agricultural College – Pauling was also a regular contributor to the Journal of the American Chemical Society. So it came as little surprise that the Chicago section chose to honor Pauling with the Gibbs Medal. And in receiving the award, Pauling entered into truly elite company, joining other greats including his Caltech mentor A. A. Noyes (1915), as well as Madame Marie Curie (1921), current ACS President Moses Gomberg (1925), and the namesake of his previous ACS prize, Irving Langmuir (1930).


220px-Josiah_Willard_Gibbs_-from_MMS-

J. Willard Gibbs

The Gibbs Medal was established in 1910 by William A. Converse, a former chair of the Chicago section of the American Chemical Society. Converse greatly admired Josiah Willard Gibbs and considered him to be “an outstanding example of creativity in the field of scientific investigation.”

Gibbs (1839-1903) was an American mathematical physicist based at Yale University who made important theoretical contributions to multiple scientific disciplines and who helped to form the idea of intersectional science through his studies in physical chemistry. However, many of his contributions were not fully appreciated during his lifetime, and it wasn’t until later that his impact became more broadly recognized. Gibbs is now considered to be the “father of vector analysis” and his most significant work, On the Equilibrium of Heterogeneous Substances, is well-known in the scientific world.


Though he won the medal in 1946, Pauling had actually been nominated several times before. On three occasions (1941, 1942 and 1946), these nominations precluded Pauling from carrying out a duty for which he had been selected: serving as a jury committee member for the Gibbs Award.

Nominations for the award were solicited by the jury committee each September. Once a pool had been compiled, the group would then proceed through several rounds of voting until just one nominee remained. This individual would receive the award from the Chicago section in the following spring. The jury was composed of twelve eminent chemists and chemical engineers enlisted from various regional groups of the American Chemical Society. In the year that Pauling was elected, the chairman of the committee was Dr. Henry R. Spruth.

Interestingly, Pauling’s role in the process of nominating and electing new recipients of the Gibbs Medal did not end after he won. The by-laws governing the selection of recipients state that, in cases where at least eight of the twelve members of the jury cannot arrive at a consensus, “the Chairman shall secure the vote of the past Medalists residing in North America on the two or more remaining candidates” in order to decide on a single recipient. Up until his death in 1994, Pauling was regularly asked to contribute a vote to resolve situations of this type.


bio6.005.002

At the Chicago dinner, Pauling was presented the Gibbs Medal by W. Albert Noyes, Jr. A photochemist at the University of Rochester, Noyes was also president-elect of the ACS for 1946. In his introduction of Pauling, Noyes recited the long list of accomplishments that had led up to this moment:

…for eminent work and original contributions in chemistry and related scientific fields through the determination of many molecular structures, inter-atomic distances, bond angles and covalent radii of atoms; for quantitation of the classical theory of electronegativity; for extension and application of the resonance principle to chemistry; and for formulation of a framework theory of antibody formation. We honor Linus Pauling!

Pauling then delivered his acceptance address. Having penned multiple drafts in anticipation of the event, Pauling ultimately decided that, since he was being given the award primarily for his contributions to structural chemistry, he would focus mostly on this topic. He began his address by providing a survey of advancements in the field, beginning with Lucretius who, about 2,000 years before, had written that

wine flows easily because its particles are smooth and round and roll easily over one another, whereas the sluggish olive oil hangs back because it is composed of particles more hooked and entangled one with another.

From there, Pauling moved forward through a series of discoveries made by more contemporary scientists, each one building upon the next.

He then arrived at his own work which, by then, had touched on components of physics, mineralogy, chemistry, and biology, but had always followed one common ambition: the desire to truly understand the structure of the molecule. In particular, Pauling had made great use of x-ray diffraction and absorption spectroscopy techniques to advance his studies. He concluded his speech with a call to scientists everywhere that they apply the the theoretical breakthroughs that structural chemists had made in the first half of the twentieth century to the search for solutions to “such great practical problems as those presented by cancer and cardiovascular disease.”


Pauling was a popular pick for the Gibbs Award. Not long after delivering his banquet address, he received a letter from a colleague, Emory University professor William H. Jones, in which he added “my congratulations to the mound of fan mail” and asked “How does it feel to be a Cover Boy for the New Edition?”

Jones wasn’t wrong about the mountain of mail — Pauling received scores of congratulatory letters from colleagues, friends, former students and professors, and random strangers alike. The sentiment expressed by nearly all of these well-wishers was aptly summarized by fellow Gibbs laureate Moses Gomberg, who had presented Pauling with the Langmuir Prize in 1931. “He has grown by leaps and bounds – and is still young!,” he wrote. “My congratulations and wishes to him!”

[Ed Note: This is the 700th post published by the Pauling Blog.]

The Langmuir Award

1931h.1-400w

In 1931 Linus Pauling was early on in his career as a professor at the California Institute of Technology, and was deep into a program of research on structural chemistry that would prove revolutionary. Pauling was one of the brightest young minds that Caltech had seen to date, and the announcement that Pauling was to receive the inaugural Irving Langmuir Prize from the American Chemical Society served as further evidence of his extraordinary abilities. The first major award received by Pauling as an academic, the Langmuir Prize would be followed by countless additional decorations honoring a long and storied career.

The Irving Langmuir Prize, also known as the Pure Chemistry of the American Chemical Society Prize, was created by A.C. Langmuir, an industrial engineer who manufactured shellac and glycerine. First announced in early 1931, the $1,000 award was meant to serve as a form of encouragement and support for young chemists in the United States. The decision to honor Linus Pauling as the initial recipient of the award was made by a select committee of American Chemical Society members.


langmuir-12979-portrait-mini-2x

Irving Langmuir

A.C. Langmuir named the prize after his brother, Irving, a renowned scientist who would receive the Nobel Chemistry Prize in 1932 for his work in surface chemistry. In addition to his status as a Nobel laureate, Langmuir is today remembered by many for developing light bulbs that were more efficient and longer lasting than the Nernst Lamp model that had previously dominated the marketplace.

While Pauling no doubt appreciated Irving Langmuir’s practical work, his theoretical contributions made a far more profound impact on the budding young scientist, who began reading Langmuir’s papers while still an undergraduate at Oregon Agricultural College. As he noted in 1946,

I became deeply interested in molecular structure and the nature of the chemical bond in 1919, when I first read [G.N.] Lewis’ 1916 paper and Irving Langmuir’s papers on this subject.

One 1919 paper proved especially important. In it, Langmuir discussed his application of G.N. Lewis’ insights into chemical bonding and his observation that pairs of electrons can be shared by atoms in many substances. Importantly, Langmuir also used the article to put forth the idea that a full understanding of the chemical bond could not be arrived at through the simple application of a chemist’s or physicist’s training. Rather, the problem required a marriage of the two disciplines.

Titled “The Arrangement of Electrons in Atoms and Molecules” and published in the Journal of the American Chemical Society, Langmuir’s paper served as an inspiration to Pauling, who did indeed marry aspects of chemistry and physics in elucidating a new theoretical understanding of the chemical bond.

Twelve years later, Pauling was hard at work on several research projects that were driven by this stroke of inspiration. Most notably, Pauling had recently authored his landmark article “The Nature of the Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from the Theory of Paramagnetic Susceptibility to the Structure on Molecules,” the first in a series of significant papers on the structure of the molecules. By the time that Pauling received his ACS award in September, he had already released the third installment in the series. Taking note of this dizzying array of productivity, Scientific American dubbed Pauling the “explorer of electrons” in a 1931 article.


1931n.007

Humorous editorial cartoon published in the “Double Bond Jr.,” a publication circulated at the Buffalo ACS meeting in September 1931.

Pauling was nominated for the Langmuir Prize by his Caltech mentor, A.A. Noyes. The director of the Gates Chemical Laboratory and a respected member of the American Chemical Society, Noyes’ views carried significant weight with his peers, and in his nomination letter of June 8, 1931, Noyes described Pauling as “the most promising young man with whom I have ever come in contact in my many years of teaching.” This hearty endorsement, combined with Pauling’s vita – which already listed more than fifty published papers – made the decision an easy one for the award committee.

Pauling, with his wife Ava Helen, received the prize on September 2, 1931 in Buffalo, New York. At the ceremony, A.C. Langmuir praised the body of work that Pauling had already compiled and accurately predicted that he would one day be a Nobel Prize winner. The Langmuir decoration proved to be a source of significant attention for Pauling. In one of a bevy of congratulatory letters that followed, former classmate W.E. Ramsey noted that “I knew you were a genius because you could solve my calculus problems which were always a mystery to me.” Likewise, University of Chicago chemist Thorfin Hogness recounted that he expected Pauling would win the award as soon as it was introduced.

In addition to raising Pauling’s profile, the financial support provided by the Langmuir Prize was especially significant as the United States was entering into the worst years of the Great Depression. Indeed, the $1,000 award that came with the prize was equivalent to a quarter of Pauling’s annual salary. Today, in recognition of its namesake’s interdisciplinary focus, the Irving Langmuir Prize is granted alternately by the American Chemical Society and the American Physical Society. Recipients now receive a cash award of $10,000.

As time moved forward, Pauling remained very active within the American Chemical Society, serving as president of the organization in 1949. He would also win several additional major awards offered by the ACS, including the Josiah Willard Gibbs Medal in 1946. So too did Pauling receive a great many decorations from regional chapters of the organization. In 1966, he was the recipient of perhaps the most noteworthy of these awards when the Oregon and Puget Sound sections presented him with the first Linus Pauling Medal for outstanding achievement in chemistry.

 

The Pauling Medal Awardees

1967i.22

Lucile Jenkins (Pauling’s sister), Linus Pauling and Ava Helen Pauling at the Pauling Medal ceremony, 1967.

[Part 2 of 2]

Ten years into the history of the Linus Pauling Medal, the two American Chemical Society sections that sponsored the award – the Puget Sound section and the Oregon section – decided to edit and modernize their nominating process for the 1976 presentation. Essentially, the sections sought to streamline their process and improve ease of comparison by requiring that nomination packets for each nominee be submitted in the same format, and that specific types of information be included for every individual under consideration.

The 1976 nomination round also included a ramped up discussion of including more women among the pool of nominees, though in fifty years still only one female has received the medal. Caltech’s Jacqueline K. Barton, the Pauling Medal awardee for 2007, is likewise the first female recipient of a number of other prestigious decorations in chemistry, including the National Medal of Science and the Priestley Medal. Barton is also married to a fellow Pauling Medal winner, Peter Dervan, who received the prize eight years before his wife.

1969i.17

Pauling, Edward Barnes, Henry Eyring, and two unidentified individuals at the ceremony honoring Eyring as Pauling Medalist for 1969.

At a meeting held in June 1977, the two sponsoring sections discussed a further major change: adding the support of the Portland ACS section to the nominating and awarding committees. Though the benefits of including a third organizational body to absorb the logistical work and the costs of the event were evident to all involved, it was agreed that the three sections would need to wait six more years before Portland could be included, specifically because six medals had already been cast bearing the joint sponsorship of the Puget Sound and Oregon sections. Another six years would also give the three committees plenty of time to work out any kinks that might arise through the addition of another section to the nominating and awarding process.

As it happened, it actually took longer than six years to jointly award the medal across all three sections. The Portland group finally came aboard as a formal awarding body in 1987, at which point the medal was presented in the Rose City every third year, beginning in 1989.


 

1992i.20

Dudley Herschbach, Seymour Rabinovitch, Rudolph Marcus, Ahmed Zewail and William H. Miller at the Pauling Medal ceremonies honoring Marcus in 1992. Herschbach, Marcus and Zewail are all Nobel Chemistry laureates.

Over the course of its fifty years, the Linus Pauling Medal has been bestowed upon an accomplished group of scientists, most of whom have received other top awards in the field of chemistry broadly as well as a variety of decorations in their areas of specialization.  Over a third of the Pauling recipients have also won the Priestley Medal, which is the highest honor given by the American Chemical Society and typically recognizes a lifetime of achievement. Likewise, over half of the Pauling Medal roster has received the National Medal of Science – the highest award that a scientist can receive from the United States government – and more than a quarter are Nobel laureates.

Unsurprisingly, the Pauling Medal list includes a great number of chemists who were close colleagues of and, in some cases, collaborators with the award’s namesake. Several of Pauling’s former graduate students and post-docs are also sprinkled throughout.

Here are the fifty recipients of the Linus Pauling Medal:

  • 1966: Linus Pauling, Staff Member, Center for the Study of Democratic Institutions
  • 1967: Manfred Eigen, Director, Max Planck –Institute for Physical Chemistry, Gottingen, Germany
  • 1968: Herbert C. Brown, Professor of Inorganic Chemistry, Purdue University
  • 1969: Henry Eyring, Dean of the Graduate School and Professor of Chemistry, University of Utah
  • 1970: Harold C. Urey, Professor at Large, University of California at San Diego
  • 1971: Gerhard Herzberg, Division of Pure Physics, National Research Council of Canada
  • 1972: E. Bright Wilson, Professor of Chemistry, Harvard University
  • 1973: E. J. Corey, Professor of Organic Chemistry, Harvard University
  • 1974: Roald Hoffman, Professor of Chemistry, Cornell University
  • 1975: Paul Bartlett, Professor of Chemistry, Texas Christian University
  • 1976: F. Albert Cotton, Professor of Chemistry, Texas A & M University
  • 1977: John A. Pople, Professor of Chemical Physics, Carnegie-Mellon University
  • 1978: Dudley Herschbach, Professor of Chemistry, Harvard University
  • 1979: Daniel E. Koshland, Jr., Professor of Chemistry, University of California at Berkeley
  • 1980: John D. Roberts, Professor of Chemistry, California Institute of Technology
  • 1981: Henry Taube, Professor of Chemistry, Stanford University
  • 1982: George C. Pimental, Professor of Chemistry, University of California at Berkeley
  • 1983: Gilbert Stork, Professor of Chemistry, Columbia University
  • 1984: John S. Waugh, Professor of Chemistry, Massachusetts Institute of Technology
  • 1985: Harold A. Scheraga, Professor of Chemistry, Cornell University
  • 1986: Harry B. Gray, Professor of Chemistry, California Institute of Technology
  • 1987: Harden M. McConnell, Professor of Chemistry, Stanford University
  • 1988: Keith Ingold, Associate Director of the Division of Chemistry, National Research Council of Canada
  • 1989: Neil Bartlett, Professor of Chemistry, University of California at Berkeley
  • 1990: James P. Collman, Professor of Chemistry, Stanford University
  • 1991: Rudolph A. Marcus, Professor of Chemistry, California Institute of Technology
  • 1992: Kenneth Wiberg, Professor of Chemistry, Yale University
  • 1993: Richard Zare, Professor of Chemistry and Physics, Stanford University
  • 1994: James Ibers, Professor of Chemistry, Northwestern University
  • 1995: Alexander Rich, Professor of Biophysics, Massachusetts Institute of Technology
  • 1996: Kyriacos C. Nicolaou, Professor of Chemical Biology, Scripps Research Institute
  • 1997: Ahmed H. Zewail, Professor of Chemistry and Physics, California Institute of Technology
  • 1998: Allen J. Bard, Professor of Chemistry, University of Texas at Austin
  • 1999: Peter B. Dervan, Professor of Chemistry, California Institute of Technology
  • 2000: Gabor A. Somorjai, Professor of Chemistry, University of California at Berkeley
  • 2001: Tobin J. Marks, Professor of Catalytic Chemistry, Northwestern University
  • 2002: John I. Brauman, Professor of Chemistry, Stanford University
  • 2003: Robert H. Grubbs, Professor of Chemistry, California Institute of Technology
  • 2004: Martin Karplus, Professor of Chemistry, Harvard University
  • 2005: George Whitesides, University Professor, Harvard University
  • 2006: Peter J. Stang, Professor of Chemistry, University of Utah
  • 2007: Jacqueline K. Barton, Professor of Chemistry, California Institute of Technology
  • 2008: Thomas C. Bruice, Research Professor in Chemistry and Biochemistry, University of California at Santa Barbara
  • 2009: Stephen J. Lippard, Professor of Chemistry, Massachusetts Institute of Technology
  • 2010: Armand Paul Alivisatos, Professor of Chemistry and Materials Science and Engineering, and Director of the Lawrence Berkeley National Lab, University of California at Berkeley
  • 2011: Larry R. Dalton, Professor of Chemistry and Electrical Engineering, University of Washington
  • 2012: Robert Cava, Professor of Chemistry, Princeton University
  • 2013: Chad Mirkin, Professor of Chemistry, Professor of Medicine, Professor of Materials Science and Engineering, Professor of Biomedical Engineering, and Professor of Chemical and Biological Engineering, and Director of the International Institute for Nanotechnology and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University
  • 2014: Stephen Buchwald, Professor of Chemistry, Massachusetts Institute of Technology
  • 2015: Barry M. Trost, Professor of Humanities and Sciences, Stanford University

Fifty Years of the Linus Pauling Medal

1966h.9-obverse-400w

[Ed Note: With the awarding of the ninth Linus Pauling Legacy Award to Dr. Jane Lubchenco scheduled for next Tuesday, we thought this an appropriate time to take a look at the first award to have been named for Linus Pauling; one that turns fifty years old in 2016. This is part 1 of 2.]

Though Linus Pauling was a much celebrated and well-respected scientist across the globe, he traced his roots to the Pacific Northwest and always felt a special connection to the region. It would seem fitting then that the first award to bear his name would come from the area.

In a letter dated December 9, 1965, Pauling first learned that two regional sections of the American Chemical Society – the Puget Sound Section and the Oregon Section – were collaborating on a new award that would bear his name. The Linus Pauling Medal would be granted each year, beginning in 1966. Quite appropriately, the two sections asked that Pauling be the first recipient of the honor.

The Pauling Medal would replace the former Puget Sound Award (given, as one might assume, by the Puget Sound Section) and would “recognize distinguished achievement in chemistry.”  Furthermore, though the interests of Pacific Northwest scientists would play a role in deciding who received the decoration, the nomination criteria made it clear that this was not specifically a regional award:

A nominee shall have made outstanding contributions to chemistry of a character that have merited national and international recognition and that are of particular interest to chemists of this geographical area.

Indeed, though two ACS sections sponsored the award, its nomination guidelines specified that recipients need not reside within the geographical regions represented by the two sponsors. And though the medal was named for him, Pauling did not think it proper for him to be involved with deliberations concerning recipients, and he accordingly refused to nominate anyone or offer a letter of endorsement for those nominated by others.

The award itself consists of a gold medal engraved with Pauling’s profile, crowned with the text “Linus Pauling Medal,” and also including the names of the (now three – the Portland ACS section joined the award in the 1980s) sponsoring ACS sections. The awardee’s name and the date that it is bestowed are engraved on the back of the medal, accompanied by the text “for outstanding achievement in chemistry.” The medal is accompanied by a scroll.

In its early years, the Pauling Medal was granted at a ceremony hosted alternately by the two sponsoring sections, with the Oregon section usually rotating its turns between venues at Oregon State University and the University of Oregon.  The ceremony itself generally consisted of a meeting featuring a keynote address by the recipient and ancillary lectures as delivered by other distinguished chemists. The event concluded with a celebratory banquet. The ongoing costs of the award, including travel and meeting expenses, were split between the two sections.


pugetsound-bulletin

By design, the nomination process established for the Pauling Medal had the potential to be long and complicated, involving several rounds of voting until a consensus was reached on one awardee.  And from the beginning, the goal for each year has been to generate a minimum of ten nominations to be considered by the award committee, with a preferred pool of twenty possibilities.

Compiling this pool required the cooperation of both a canvasing committee and an award selection committee.  The canvassing committee’s job was to solicit nominations, meet at the Northwest Regional meeting to review the names that had been received, organize them for evaluation by the award selection committee, and recommend any changes to procedure that might help out in the future. The call for nominations went out early in the calendar year, so as to allow for enough time to vet potential awardees and to find a ceremony date that was mutually agreeable.

At first, the canvassing committee expressed a preference for older candidates who, like Pauling, had remained creative and continued to make important advancements in their specific field.  As the award developed and its standards became more concrete, the goal shifted to presenting the award to a chemist whose career would clearly benefit from the decoration, which usually meant concentrating on younger nominees (as was Pauling’s wish).

Once the canvassing group had done its job, the final selection was made by an award committee comprised of five members: two from each sponsoring section and a chair selected from alternating sections. In addition to the pool developed by the canvassing committee, the awarding group could add names of their own.

The criteria for selection were very flexible, with only two strict conditions placed: 1) no member of the canvassing or awarding committees could be considered and 2) a candidate could not be awarded the Pauling Medal for the same achievements that had led to their receipt of a Nobel Prize. Rather, consideration for the Pauling Medal would be based entirely on new and innovative work.


lpmedal-program

 

Linus Pauling received the first Linus Pauling Medal on December 3, 1966 at a celebration held in Portland’s Memorial Coliseum. His acceptance talk was titled “Science as a Way of Life,” and made mention of the insect collections that he compiled as a boy, a few scientific mishaps that he encountered during his career and, in particular, his struggles in determining the molecular structure of sodium dicadmide. He also included the now famous story of how he determined the alpha-helical structure of proteins while folding paper as he was sitting sick in bed.

In addition to Pauling’s lecture, the first Pauling Medal event included talks by Neil Bartlett, Martin Karplus, and Joseph Kraut. Bartlett would later receive the Pauling Medal himself in 1989 and Karplus – the 2013 Nobel Chemistry laureate – was likewise honored in 2004.

Having traveled to Oregon for the event, Linus and Ava Helen took advantage of their visit to drive down to Corvallis to meet with chemistry students and to speak as part of a convocation at Oregon State University. Following their time in Portland, they headed north to Spokane, Washington, where Linus gave a talk at Gonzaga University. From there they went to Seattle where they saw one of Ava Helen’s brothers and gave yet another lecture, this time at the University of Washington.

In the years that followed, the Paulings attended the Pauling Medal ceremonies as often as they could, participating more frequently as time went on. When Pauling was able to make it, he was recognized as a guest of honor of the sponsoring sections and would typically say a few words in praise of the awardee. In years when he was unable to attend the ceremony, Pauling would usually send a letter of congratulations to the awardee.  He continued to attend the event long after Ava Helen’s death in 1981, making an appearance virtually every year until his own health started to decline in the early 1990s.

 

 

Ahmed Zewail, Priestley Medalist

Ahmed Zewail

We send our congratulations to Dr. Ahmed H. Zewail, Caltech’s Linus Pauling Professor of Chemical Physics, who was recently named recipient of the 2011 Joseph Priestley Medal, the highest decoration granted by the American Chemical Society.  Dr. Zewail is, of course, no stranger to major honors, having received the 1999 Nobel Prize for Chemistry.

As with the Nobel award, Zewail’s Priestley medal is being granted for his groundbreaking research in femtochemistry.  Zewail was the keynote speaker at our 2001 Pauling Centenary Conference and his address, titled “Timing in the Invisible,” serves as a useful introduction into the fascinating world of femtochemistry – broadly defined as the study of atomic behaviors that occur in very short periods of time.

In his 2001 talk, Zewail described the experiments that his laboratory had, at the point, developed in their quest to measure the activity of very small, very fast systems.  Using homegrown laser technologies, the Zewail group first succeeded in making simple observations of the periodic stretching and compression of bonds between two atoms.  From there, the researchers moved on to more complex investigations, including measurements of the energy needed to break the bonds of a given atomic arrangement.

The speed of the processes that Zewail’s laboratory studies are mind-boggling to the non-scientist.  As Zewail described it, one primary use of femtoscience is the study of “the fundamental vibrational time scale” – the “spring-motion” movement of two bonded atoms – that occur in tiny segments of time ranging from 10-12 to 10-14 seconds.

And as it turns out, there are many practical applications that have emerged from femtoscopic research, including, for example, the mechanics of human vision and the properties of photosynthesis in plants.  Femtoscopic experiments also provide a method for researchers to determine the amounts of energy that hold together different types of chemical bonds. In effect, femtoscience allows scientists to, in Zewail’s words, “see bonds and atoms.”

Zewail also took a few moments in his Centenary Conference keynote to reflect upon his relationship with Linus Pauling, whom he knew for the last two decades of Pauling’s life.   In doing so, Zewail provided some context for what has become one of more eye-catching artifacts held in the Pauling Papers.

I also organized the 90th birthday for Linus at Caltech, and I think if Linus did not come back to Caltech to share his great moments, it would have been a mistake in the history of Caltech and science. I even crowned him the Pharaoh of Chemistry, and I believe that he loved this picture….It cost me about $500 to do this, because I had to go to Hollywood and try to fit his face into one of Ramses II.

As one might expect, chemistry’s king of kings also received the ACS’s most prestigious award, accepting it at a ceremony in April 1984.  In his speech that evening, Pauling reflected a great deal upon the life and work of Joseph Priestley (who was something of a kindred spirit), and in one particular passage especially, the reader is able to draw a parallel between the award’s namesake and its 2011 recipient.

One of Priestley’s biographers, Gibbs, has asked ‘How was it that, in this difficult and obscure field [of the existence and nature of different kinds of gases] he was able to make advances that had eluded so many men of science?  He himself put it down to his habit of searching into dark and mysterious corners, and of following a scent wherever it might lead, without any preconceived notions.  Almost alone among scientists then living, he was honest enough to credit part at least of his success to enthusiasm and a sense of adventure.