DNA: The Aftermath

Pastel depiction of the DNA base pairs by Roger Hayward.

Pastel depiction of the DNA base pairs by Roger Hayward.

The solving of the double helix structure of DNA is now considered to be one of the most important discoveries in modern scientific history. The structure itself suggested a possible mechanism for its own replication, and it also opened up a huge window of opportunity for advances in multiple fields ranging from biology to genetics to biochemistry to medicine. Almost immediately after James Watson and Francis Crick announced their structure, new research began based on the structure’s specifications.

An Early Idea from George Gamow

The Pauling Papers contain an interesting example of research done on the structure of DNA mere months after its discovery. On October 22, 1953, the Russian-born physicist (and founder of the “RNA Tie Club“) George Gamow sent a letter to Linus Pauling that mentioned some work he had been doing with DNA. Gamow explained that he had found a manner by which the twenty amino acids that make up proteins could be related to different combinations of the four nucleotides found in DNA.

At this time, it wasn’t known that the DNA strands unwind during replication, and Gamow assumed that protein synthesis occurred directly on the double helix. He suggested that a “lock and key relationship” might exist between each amino acid and that the “holes” formed between each complementary base pair in the DNA chain. Science is now aware that this is not the case, but Gamow’s letter is nicely demonstrative of the innovative research ushered in by Watson and Crick’s solving of DNA.

Excerpt from Gamows letter to Pauling, October 22, 1953.

Excerpt from Gamow's letter to Pauling, October 22, 1953.

Click here to view Gamow’s entire letter, and here to read Pauling’s response.


As the buzz around DNA started to die down, scientists began to move toward the next logical step: RNA. By then, Watson and Crick’s structure was widely accepted, and it had been clear for some time that DNA was the site of the gene. So, then, how did DNA transfer its information to RNA, and finally on to proteins?

Gamow’s above suggestion was a possibility, but it didn’t even involve RNA. Watson spent some time playing with the matter, but was not able to equal his luck with DNA. Unfortunately, it would be quite some time before this mechanism was elucidated. Even now, some of the finer details of how this is accomplished are not completely understood.

Four members of the RNA Tie Club, 1955. Clockwise from upper left: Francis Crick, Lesley Orgel, James Watson and Alexander Rich.  Founded by George Gamow, the RNA Tie Club met twice a year in pursuit of greater understanding of RNA.

Four members of the RNA Tie Club, 1955. Clockwise from upper left: Francis Crick, Leslie Orgel, James Watson and Alexander Rich. Founded by George Gamow, the RNA Tie Club met twice a year in pursuit of greater understanding of RNA.

Eventual Honors

Unsurprisingly, as time went on, Watson and Crick began to accumulate awards for their work with DNA. On December 15, 1959, Linus Pauling responded to a previous letter sent to him by Sir William Lawrence Bragg soliciting Pauling’s support of the nomination of Watson and Crick for the Nobel Prize. In this letter, Pauling stated that he would indeed be willing to write the requested letter of support. However, contrary to Bragg’s suggestion that they be nominated for the prize in chemistry, Pauling stated his belief that a prize in physiology or medicine would be much more fitting.

Several months later, on March 15, 1960, Pauling finally sent his letter to the Nobel Committee.  By the time of its authorship, Pauling’s feelings about the importance of Watson and Crick’s work had become even more tepid.

While acknowledging that “the hydrogen-bonded double-helix for DNA proposed by Watson and Crick has had a very great influence on the thinking of geneticists and other biologists,” Pauling notes that their work was, at least to some degree, “stimulated” by his and Robert Corey’s incorrect triple-helix structure, and abetted by Maurice Wilkins‘ x-ray photographs.  Pauling also points out that Wilkins, Corey, Karst Hoogsteen and himself had already tweaked the Watson-Crick model a bit, “which suggests the possibility that a further change in the structure of nucleic acid may be found necessary.”

In the end, Pauling couldn’t bring himself to go through with the promised nomination.

It is my opinion that the present knowledge of the structure of polypeptide chains in proteins is such as to justify the award of a Nobel Prize in this field in the near future, to Robert B. Corey for his fundamental investigations of the detailed molecular structure of amino acids and the polypeptide chains of proteins or possibly divided between him and Kendrew and Perutz. On the other hand, I think that it might well be premature to make an award of a Prize to Watson and Crick, because of existing uncertainty about the detailed structure of nucleic acid. I myself feel that it is likely that the general nature of the Watson-Crick structure is correct, but that there is doubt about details.

Pauling’s hesitations served only to delay their inevitable receipt of a Nobel Prize for a short time. In 1962, Francis Crick, James Watson, and Maurice Wilkins shared the award in Physiology or Medicine “for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material.”

The discovery of the structure of DNA was clearly one of the most important discoveries in the modern scientific era. Not only was it a huge breakthrough in itself, but it also opened the door for major advances in numerous other science-related fields. For more information on DNA, check out the rest of the posts in our DNA series or the website on which they are based, “Linus Pauling and the Race for DNA: A Documentary History.” For more information related to Linus Pauling, please visit the Linus Pauling Online portal.