Becoming Division Chair: Staffing a New Laboratory, Noyes’ Death, and a Conversation with Harvard

crellin-3rd

Architectural schematic for the third floor of the Crellin Laboratory.

[Pauling as Administrator]

In November 1935, Edward Crellin, a retired Pasadena steel magnate, and his spouse Amy, informed Caltech chemistry chief A.A. Noyes of their wish to provide majority funding for a new building to be used by the Division of Chemistry and Chemical Engineering. Planning for this new facility promptly commenced and, by the next month, had advanced to the point where Noyes could tell the Division Council that construction would begin in spring 1937. In the meantime, fundraising and design work continued, a process that was aided by Crellin’s forgiveness of a $60,000 annuity owed to him by Caltech.

By spring 1936, the final plans appeared to be coming together for the new space. It would be called the Crellin Laboratory, and the division’s existing facility would become the Gates Laboratory. One issue of particular concern was the square footage to be made available for biochemistry research supported by the Rockefeller Foundation. Another key need was finding a person suitable to organizing this work.


1950i.24-niemann-600w

Carl Niemann, 1950

Linus Pauling was tasked with leading the search for the head researcher position but, as had happened the previous year, his inquiries yielded few leads. In his correspondence with Thorfin Hogness, a close colleague at the University of Chicago, Pauling learned that they too were looking for someone similar. This shared difficulty encountered by both institutions reflected a growing interest in biochemical research nation-wide that had been catalyzed, in no small measure, by the Rockefeller Foundation.

More promising suggestions came from Moses Gomberg at Johns Hopkins University and from the Rockefeller Foundation itself, in the form of Warren Weaver. Gomberg suggested Edwin Buchman and Weaver suggested Carl Niemann, but both struck Pauling as being too early in their careers to fill this position. Making a trip back East, Pauling began to search in person, interviewing “young bio-organic chemists” and getting “advice from several older ones.”

The most important conversation that Pauling had during this trip was with Warren Weaver. In it, Pauling learned that the Rockefeller Foundation would not commit to even a “small grant” for “preliminary investigations,” if the division was not able to meet an April 1937 deadline for submitting a “well worked out plan” for initial implementation in September. Weaver also shared his sense that the foundation’s trustees would likely not consent to supporting a program headed by “only young and relatively untried men at the beginning of their careers.”

Having received this guidance, Pauling suggested that Caltech hire a mid-career candidate who had already made significant contributions, and then add young men who could be groomed by this individual. The only person whom Pauling had met so far who approached this description was Hans T. Clark, a faculty member in the Department of Biochemistry at Columbia University. Pauling worried though, that Clark’s research was not “outstanding.” Another possibility was Samuel Gurin, a National Research Fellow at the University of Illinois and Pauling’s favorite among the “young men” that he had interviewed.

In the end, neither Clark nor Gurin was hired. Instead, Edwin Buchman and Carl Niemann – the two candidates suggested by Moses Gomberg and Warren Weaver – were brought on as temporary junior appointments. Though young, both were brimming with promise: Niemann had already published ten papers by the age of twenty-five, and Buchman quickly secured funding for his research on vitamin B1. As it turned out, both also stayed at Caltech for the remainder of their careers.


192-i.147

A.A. Noyes

On June 6, 1936, with the Crellin facility still in its planning phase and a succession plan for division leadership still not in hand, A.A. Noyes passed away. For many in the division, sadness at Noyes’ passing was amplified by feelings of resentment toward Pauling, the likely new chair, who was widely seen as having pressed the issue of succession too aggressively during Noyes’ final days. For this and other reasons, many colleagues favored the appointment of physicist Richard Tolman instead, forcing him, just four days after Noyes’ death, to clarify that he would not accept the position if offered.

Tolman’s preemptive refusal fell on deaf ears with the Executive Council, who recommended him anyway. Tolman, who was already Dean of the Graduate School and whose research did not comfortably align with the division’s broader work, responded to the council once more at the end of June, explaining

I am very appreciative – and indeed quite touched – by this expression of confidence on the part of the members of the Executive Council. Nevertheless, both from the point of view of my own work and from that of the welfare of the Institute, I do not think that it would be wisest for me to accept.

For his part, Tolman still favored the plan that he had devised the previous year with Noyes, George Ellery Hale and Robert Millikan, wherein it was recommended that Pauling take over as leader working in tandem with the Division Council. Tolman noted that as “an outstanding chemist, who is actively engaged in chemical research, who has a good knowledge of the chemical work being done in this and in other countries, and who is himself recognized as a man who is now making important contributions to chemistry,” Pauling was the perfect candidate. Tolman also hoped that the Division Council structure could be maintained and put forth that, as originally planned, he would continue to serve on the council since it was a position from which he could most effectively benefit the division.


Pauling’s strong objections to the Tolman group’s proposal in general, and the Division Council structure in particular continued to hold. Feeling that the window for advancing on acceptable terms at Caltech was nearing its close, Pauling also began to seriously entertain the idea of working elsewhere.

In 1929, Harvard University had recruited Pauling for a position as Professor of Physical Chemistry, an offer that Pauling ultimately refused. Seven years later, the division chairmanship seemingly out of reach, Pauling wrote to the new President of Harvard, James B. Conant, asking if the 1929 offer was still a consideration. Conant replied that the position had since been filled by one of Pauling’s former students, E. Bright Wilson, and that Harvard was not presently in a position to create a new job for Pauling. This news came as a disappointment, but other opportunities were soon to arrive.

Becoming Division Chair: The Division Council, Pauling’s Demur, and Weaver’s Promise

1935i.1

Linus Pauling, 1935

[Pauling as Administrator]

In 1935, after being diagnosed with colon cancer, A.A. Noyes knew that he would soon have to step down from his position as Chairman of the Division of Chemistry and Chemical Engineering at the California Institute of Technology. As such, Noyes began planning how best to transition his administrative portfolio to whomever might be elevated as the next chairman. Noyes favored the idea of promoting a strong researcher – rather than an experienced administrator – into the position, and was likewise keen to continuing strengthening the divisions’s ties to the Rockefeller Foundation. With these criteria set, Noyes quickly settled on Linus Pauling as his favored successor.

Pauling was aware of Noyes’ preferences and, as time moved forward, began to press the issue himself. When July arrived and little movement had been made toward appointing a new chair, Pauling approached Robert Millikan, professor of physics and Chairman of the Executive Council at Caltech, to make his case more aggressively. As a close friend of Noyes, whose health was on the decline, (he would die less than a year later) Millikan was infuriated with Pauling’s insensitivity to the circumstances. But this did not stop Pauling: within two weeks, after thinking the situation over, Pauling addressed Noyes directly by letter, claiming that he was considering leaving Caltech since the promised chairmanship had apparently been taken away.


For his part, Noyes still wanted Pauling to succeed him as chair. Upon receiving Pauling’s letter, Noyes passed it on to astronomer George Ellery Hale, who had been central to shaping Caltech into a prestigious institution over the previous two decades. Noyes also met in person with Hale, Millikan, and physicist Richard Tolman to discuss the question of his successor.

Millikan favored Tolman for the position, in part because he was concerned that Pauling’s modest upbringing would impact his ability to engage with and woo wealthy donors. Noyes also admitted to harboring concerns about Pauling’s leadership style, the result of having observed him in the laboratory, where he was inclined to delegate specific tasks to his students and staff rather than allowing those under him to think through problems for themselves.

Ultimately the four decided that the best course of action was to split the leadership of the division in half. Pauling would be anointed as chairman but would be asked to work with a new Chemistry Division Council, to be comprised of a selection of five of Pauling’s fellow faculty. The group also decided that Tolman would represent the division to the Caltech Executive Council and retain primary responsibility for interacting with donors.

The creation of the Division Council, which was modeled on the Institute’s existing Executive Council, reflected the inclusive approach to running the division that Noyes had developed during his tenure and insured its institutionalization. In a letter requesting the Executive Committee to establish the Division Council, Noyes and Tolman described the duties of the chairman as being in a “spirit of cooperation” with the council, such that the chairman would bring matters before the council and make recommendations.

A separate memo further clarified the roles to be played by the chairman and council, noting that the chairman would represent the division to the broader Caltech community, but with certain restrictions. Among them, the memo envisioned the council as having “final authority and responsibility” for making recommendations to the Executive Council concerning budgets and major expenditures, staffing and promotions, and decisions on the usage of laboratory space. The council was tasked with meeting every month during the academic year or when called by the division chair.


The annotations that Pauling made to his own copy of the memo are indicative of his point of view. In it, Pauling highlighted that the chairman would

personally decide all administrative questions, except that he will refer matters upon which a consensus of Division opinion is desirable to the Council or to the Committee of the Division, or to the Division as a whole, as indicated in the statement given below of their respective functions.

The various restrictions outlined in the memo were unacceptable to Pauling, and he refused to sign off on its contents. Instead, he replied to the memo with a written rejoinder addressed to the Executive Council. In it, Pauling expressed his feeling that the Division Council approach would prove inefficient and stagnate the progress of the unit as a whole. “The more reactionary and less ambitious members of the group,” he worried, “will determine its policy, inasmuch as to move ahead is harder than to stand still.” More specifically, Pauling was concerned that the council would be ruled by those who were most out of touch with current trends in research and the instruction, and that the quality of the division would suffer accordingly.

Hesitations about trying to work within this structure, compounded by the difficult financial times being endured nation-wide, were such that Pauling chose to the decline the chairmanship under the terms offered.

I would not accept appointment as Chairman of the Division with authority vested in a Council, inasmuch as it would be impossible or difficult to build up the Division under these circumstances. With someone else as Chairman, I would not feel called on or justified in making any effort to build up the Division, this being then the responsibility of the Chairman. Professor Morgan says that there is no chance of building the West Wing of Gates for five years, no chance of increasing the Chemistry budget, no chance of getting new staff members, no chance that the Institute would promise an increase in budget at some definite time in the future. With no prospect of developing the Division, I would not accept its Chairmanship.

Ignoring Pauling’s objections, the Executive Council approved the Division Council on November 2, 1935, the day after Pauling authored his letter. From that point, it would take more than two years to resolve the disagreement between Pauling and upper administration. Central to the healing process was Warren Weaver at the Rockefeller Foundation.


In March 1936, Weaver informed Pauling of the Rockefeller Foundation’s interest in supporting “an attack on cancer from below (structure of carcinogenic substances, etc.) but not from above.” The following month, further details about the Foundation’s proposed level of support were shared at a Division Council meeting, where it was conveyed that the grant could fund research in organic chemistry at rate of $250,000 over five to seven years, with an additional $50,000 going to the Division of Biology. The Division of Chemistry and Chemical Engineering was asked to submit its grant application by August. Needless to say, a potential windfall of this magnitude served as a powerful motivator for the division to shift its attention toward biochemistry and also provided Pauling with significant leverage in his pursuit of the division’s chair.

This leverage first began to manifest when Noyes put Pauling in charge of identifying three research fellows to attach to the grant. The previous year, Pauling had conducted a similar search and was unsuccessful. During this first attempt, Pauling had sent out letters to chemistry and medical departments at the University of Chicago, the University of Michigan, Columbia University, Washington University, and Harvard describing the ideal candidate as “original and energetic” but not requiring plum facilities to carry out effective research. This second time around, Caltech’s relative lack of facilities would be less of a problem. The potential Rockefeller grant was partly responsible for this, as was a plan to begin construction on the Crellin Laboratory the following year.

Pauling Becomes a Researcher

Roscoe Dickinson, 1923.

Roscoe Dickinson, 1923.

[Part 2 of 3 in a series investigating Linus Pauling’s life as a graduate student]

As a graduate student at the California Institute of Technology (CIT), Linus Pauling tailored a research program that was focused on the properties of matter, with a particular emphasis placed on molecular structure. This interest and the techniques that he learned would shape Pauling’s scientific thinking for the rest of his life.

Pauling’s focus on the theoretical, and his questioning of why processes move forward as they do or why structures are built as they are, was in keeping with contemporary trends in physical chemistry. Pauling enrolled at Caltech with a strong desire to learn more about the discipline of physical chemistry and his early mentor, Caltech chemistry chair A.A. Noyes, encouraged him to build up his background in x-ray crystallography to further enable this pursuit.

When Pauling began classes in September 1922, he also began his research in x-ray crystallography under the direction of his major professor, Roscoe Gilkey Dickinson.  Not much older than Pauling and a recently minted PhD himself, Dickinson would soon become Pauling’s friend. Within weeks, Pauling began receiving invitations for dinners at the Dickinson house and was soon spending the odd weekend on camping trips with Dickinson and his wife.  After Ava Helen and Linus were married, she too joined in these social gatherings.

Dickinson and Pauling worked closely together for most of Pauling’s first year of grad school, but once Pauling had mastered the techniques necessary to prepare his own research, he mostly moved without Dickinson’s direct supervision. In a 1977 interview, Pauling recalled that Dickinson “was remarkably clear-headed, logical, and thorough” while working in the lab.  And as for the research,

Fortunately the field of x-ray diffraction was in an excellent state in that the procedures were rather complicated but they were thoroughly logical, [and] consisted of a series of logical tests.

The rigor and the logic that were fundamental to the field both pleased Pauling immensely.  And before long, the prodigious young student had moved beyond the expertise of his mentor and had begun to conduct original research that was outside of Dickinson’s own capability. In fact, Pauling’s acumen in the lab and facility as an x-ray crystallographer advanced so rapidly that, by his own recollection

…after about three years…I was making structure determinations of crystals that the technique was not powerful enough to handle, by guessing what the structure was and then testing it.


X-ray apparatus at Linus Pauling's desk, Gates Laboratory, California Institute of Technology. 1925.

X-ray apparatus at Linus Pauling’s desk, Gates Laboratory, California Institute of Technology. 1925.

But in his earlier days, Pauling still needed some help. During November and December of his first year as a graduate student, Pauling prepared approximately twelve crystals and attempted to analyze them using x-rays, but none of the crystals yielded images sufficient enough to make a structure determination.

At this point, Dickinson stepped in and directed Pauling to the mineral molybdenite (MoS2), in the process showing him how to take an adequate sample, mount it, and analyze it using x-ray crystallography. This assistance in hand, Pauling was able to determine the structure of the crystal and Dickinson returned to his own work, confident in his feeling that Pauling was capable of doing the crystallography himself.

Soon after completing the experiment, Pauling was confronted by a very different type of confusion. With a successful structure determination in hand, he assumed that the next step would be to publish the work. So too did he assume that Dickinson would provide him with more direction, but he found that none was offered.  As such, Pauling wrote up his findings and presented them for review to his major professor.

Not long after, A.A. Noyes summoned Pauling to his office and carefully explained to the young graduate student that he had written up a paper with only his name on it and in the process had failed to acknowledge the crucial help that Dickinson had provided. Chagrined, Pauling revised the paper and listed himself as a second author, behind Dickinson. The experience proved to be an important one for Pauling, who was reminded early on of how easy it can be to minimize or discount the role that colleagues can play in one’s own research.


Molybdenite model, side view.

Molybdenite model, side view.

By the end of April 1923, Dickinson and Pauling had submitted their paper on the structure of molybdenite to the Journal of the American Chemical Society (JACS); it was published in June of that same year.  Together they had found the simplest crystal structure of molybdenite – which contains two molecules in a hexagonal unit – based on Laue and spectral photographs, and using the theory of space groups.  Although he published a piece on the manufacture of cement in Oregon while he was in undergrad at Oregon Agricultural College, the molybdenite paper was Pauling’s first true scientific publication.

Later that year, Pauling arrived at another milestone by publishing his first sole-author paper, one in which he described the structure of magnesium stannide (Mg2Sn) as determined, once again, by using x-rays. The paper was a huge accomplishment for another reason as well: the x-ray processes used by Pauling had never been successfully deployed for the study of an intermetallic compound before.  And even though this was his first single author paper, Pauling still made sure to thank Roscoe Dickinson in his conclusion, taking pains to avoid another scholarly faux pas.  He would continue in this practice throughout his graduate career.


Richard Tolman, 1931.

Richard Tolman, 1931.

“The crystal structure of magnesium stannide,” was one of eight articles that Pauling published during his grad school years – he completed an impressive total of six structures before receiving his doctorate. Having authored these articles, Pauling found himself on the forefront of a shift in physical chemistry: as crystallography advanced, it was becoming increasingly clear that the properties of specific compounds were based on their structures, which could now be described with mounting confidence. Indeed, several of Pauling’s articles included reevaluations of existing structures, with revised explanations as to why the structures in question had not complied with the new data that Pauling collected.

One such article was “The Entropy of Supercooled Liquids at the Absolute Zero,” which Pauling wrote with CIT faculty member Richard C. Tolman.  In their paper, the two authors corrected an earlier claim made by Ermon D. Eastman, a professor of physical chemistry at Berkeley, who had stated that complicated crystals (those with large unit cells) have greater entropy at absolute zero than do simple crystals. Using statistical mechanical techniques, Pauling and Tolman were able to show that, at absolute zero, the entropy of all perfect crystals, even those with large unit cells, also has to be zero.


Detail from 'Atombau und Spektrallinien' containing x-ray diffraction images.

Detail from ‘Atombau und Spektrallinien’ containing x-ray diffraction images.

Pauling had become familiar with Tolman through a different means. During his third term at Caltech, Spring of 1923, Pauling took Tolman’s course in advanced thermodynamics, an experience that boosted his subsequent interest in quantum theory. It was also during this period that he read Arnold Sommerfeld’s Atombau und Spektrallinien (Atomic Structure and Spectral Lines) and began to be exposed to cutting edge research in quantum theory through the numerous physics and chemistry research colloquia hosted by Caltech.

Sommerfeld would become a lasting influence on Pauling’s life and Pauling would eventually study with him in Germany while there on a Guggenheim Fellowship in 1926-27. But well before then, in 1923, Sommerfeld visited CIT to talk about his work with the new quantum theory. As an aid to his lectures, Sommerfeld used crystal models that he brought from Germany, which he hoped would help him to better explain this complicated work. Afterward, Pauling felt emboldened enough to to show Sommerfeld some of the models that he himself had made in the course of his own research; models that turned out to be much better than those constructed by Sommerfeld.