A Period of Rapid Advancement in Pauling’s Immunological Work


Dan Campbell and Linus Pauling in a Caltech laboratory, 1943.

[Part 3 of 6 in a series investigating Pauling’s work on the serological properties of simple substances.]

In April 1943, only four months after releasing his first four papers on the serological properties of simple substances, Linus Pauling was ready to publish more. His fifth paper in the series reported out on the results of hapten inhibition experiments that his lab had conducted using two different antibodies. In the experiments, “measurements were made of the inhibitory effect of each of twenty-six haptens on one antigen-antibody reaction, and interpreted to give values of the bond-strength constant of the haptens with the antibody.”

The results of the experiments, with particular attention paid to the twenty-six hapten molecules, were then discussed in the context of their possible molecular structure. In this discussion, Pauling pointed out that some of the polyhaptenic molecules did not produce participates, a detail that was explained as having been caused by steric hindrance, or the inability for a reaction to take place due to molecular structure.

David Pressman was again a co-author of the paper, as were two graduate students, John T. Maynard and Allan L. Grossberg. Grossberg would stay with Pauling’s lab until 1946 – two years after completing his war-time master’s degree – and was involved with three more papers from the series. He later went on to work with Pressman at the Roswell Park Memorial Institute and eventually became associate chief of cancer research there.

Pauling’s immunological work was quickly producing exciting new results, momentum that was recognized by The Rockefeller Foundation, which awarded Pauling another grant in June 1943. Pauling also began delivering lectures on his serological research, notably including the Julius Stieglitz Memorial Lecture in January 1944.

Articles six, seven, and eight of the serological series were each published a few months apart from one another, beginning in March 1944. Pauling co-authored these papers with previous collaborators Pressman, Campbell and Grossberg, and also with Stanley Swingle, a research fellow and instructor who had earned his Ph.D. at Caltech in 1942.

Paper VI put forth more evidence for the Marrack-Heidelberger framework theory, for which Pauling had first announced his support in Paper I. The experiments specified in Paper VI made use of fifty different substances possessing either one, two, or three haptenic groups. The results of these trials indicated that a substance containing two different haptenic groups would only form a precipitate when antisera binding to both of those two groups were present. Of this finding the article states, “this provides proof of the effective bivalence of the dihaptenic precipitating antigen, and thus furnishes further evidence for the framework theory of antigen-antibody precipitation.”

In the seventh paper, published in May 1944, Pauling returned to the simple theory for calculating the inhibition of precipitation that he had developed in Paper II, published at the end of 1942. In his discussion, Pauling reported that his laboratory’s experiments found general qualitative agreement with the theory, but the numbers tended to be off. In seeking a more reliable equation, Pauling worked to improve the theory, accounting now for the fact that a single antiserum can contain slightly different antibody molecules with assorted combining powers.

This new and improved theory, and the equation that accompanied it, agreed with experimental results much better than had the original proposal. Indeed, by accounting for variations in the antibodies, Pauling and his colleagues had succeeded in developing a “quantitative theory of the inhibition by haptens,” which would prove important to much of the work that was to come.

Paper VIII, “The Reactions of Antiserum Homologous to the p-Azobenzoic Acid Group,” appeared in October 1944 and shared the results of experiments done with a new type of antibody. Previously, experiments had been conducted with antisera homologous to two different acid groups. However, in these new investigations, the Caltech researchers used antisera homologous to another type of acid group. In doing so, Pauling and his colleagues were attempting to gauge optimum acidity levels for serological reactions; to identify the types of antigens that most readily cause precipitation; to likewise identify haptens that inhibit precipitation; and to measure the strength of their inhibiting power.

Despite Pauling’s extensive involvement in studying reactions of antibodies and antigens, he still had time for other research interests. In February 1945, Pauling and Campbell announced that they had created a usable substitute for blood plasma, the result of three years of work supported by military contracts. Shortly thereafter, Pauling learned a few key details about sickle cell anemia while meeting with the other members of the Medical Advisory Committee. He immediately thought that hemoglobin was involved and went on to experimentally prove that the disease located its source on the molecular level; a first in the history of science.


Arthur Pardee, 1980

June, July, and September of 1945 each saw the publication of another serological article: Papers IX, X, and XI respectively. The final two of this set featured the addition of a pair of new collaborators. John Bryden, a co-author for Paper X, completed his master’s degree around the time that the article was published, and Arthur Pardee was in the middle of his doctoral program when he worked on Paper XI. Pardee also worked on the experiments described in Paper XIV, although the article was published after he had completed his Ph.D. and returned to Berkeley. Pardee later went on to enjoy a hugely successful career as the Chief of the Division of Cell Growth and Regulation of the Dana Farber Cancer Institute at Harvard Medical School.


Karl Landsteiner

Papers IX and X shared the results of still more inhibition experiments. The experiments reported on in Paper IX largely confirmed Karl Landsteiner’s discovery on the combining of antiserum and antigen, or antiserum and hapten. Landsteiner had found that less bonding occurred between antibody and antigen or antibody and hapten if the substituent groups on the binding molecule were different from the antigen that created the antibody. The Pauling group confirmed this theory and, in addition, described the forces that affect hapten inhibition. Pauling believed that it had to do with intermolecular forces “including electronic van der Waals attraction…the formation of hydrogen bonds, and steric hindrance,” a supposition that would play a crucial role in later papers in which Pauling explained the incredible specificity that governs the behavior of these molecules.

Paper X studied the effect of molecular asymmetry on serological reactions. In this series of experiments, Pauling and two collaborators, David Pressman and John Bryden, had prepared an antiserum with an optically inactive immunizing antigen; e.g., a molecule that does not rotate plane polarized light. However, even though the immunizing antigen was not optically active, the antibodies in the serum combined more strongly with one configuration over an optically active hapten, which does rotate light, than in the other configuration. Pauling and his colleagues hypothesized that this was due to the presence of optically active amino acid residues in the antibody molecules.

Paper XI, published in September 1945, discussed reactions of antisera with various antigen substitutes. In this instance, the Pasadena group measured the precipitate formed by these reactions to gauge the inhibiting power of the haptens. They then correlated hapten-inhibiting power to molecular structure, suggesting that if a substance mixed with antisera more readily, then the structure of the molecule might be smaller. They ultimately discovered that if a hapten structure matched an immunizing azoprotein structure, the haptenic group exhibited a strong inhibitory effect.

In February 1946, Pauling and co-authors Pressman, Grossberg, and Leland Pence published the twelfth serological article. This was Grossberg’s fourth and final contribution; ultimately, he served as co-author on more of the series than did any other collaborator, save David Pressman and Dan Campbell. New to the series was Leland Pence, an assistant professor of organic chemistry at Reed College who had been collaborating with Pauling since 1942.

Prior to Paper XII, all previous experiments carried out by the lab had used negatively charged or neutral compounds. Paper XII presented the results of experiments that used a positively charged antibody. Pauling and his collaborators found that, even when using positively charged antibodies, hapten inhibition occurred the same way, with the same factors, as was the case with a negative or neutral compound. That said, one important difference that was observed was the ideal acidity for maximizing precipitates; when using a positively charged antibody, the pH required for the optimum amount of precipitate was much lower.

Analyzing Precipitation Reactions Between Simple Substances


Linus Pauling, 1942

[Part 2 of 6 in a series investigating Pauling’s work on the serological properties of simple substances.]

The first four papers published by Linus Pauling and his Caltech colleagues on the serological properties of simple substances described general aspects of the precipitation reactions that occur between antibodies and antigens. This work was spurred by a fundamental conundrum: Pauling and many others knew that antibodies and antigens would react to form solid precipitates. However, because the chemical structures of these precipitates were, at the time, so difficult to determine, scientists had been unable to decipher crucial details about the antibodies and the antigens that combined to form them.

Pauling’s solution to this problem was to investigate the products of a reaction that utilized, in part, a chemical compound whose structure he already knew. The constituents of these products were a simple organic compound consisting of carbon, oxygen, and hydrogen, combined with one or more haptenic groups – small molecules that spur the formation of antibodies when coupled with a larger molecule. Employing this methodology would, Pauling felt, allow him to better approximate the make-up of the antibody, because the experiment now involved only one unknown structure.

In order to run the experiments, Pauling set up a standard protocol for preparing the compounds that he needed. Each experiment required three types of compounds: simple antigens used in the precipitation reactions; immunizing antigens used to create antibodies; and antisera, which are liquids containing antibodies formed through the coagulation of blood. Pauling used this method for all of his serological reaction experiments.

Pauling and his collaborators obtained the antisera by injecting rabbits (some of them housed in Pauling’s yard and cared for by his children) with immunizing antigens. The rabbits then produced antibodies to combine with and neutralize the immunizing antigens. Once the last injection was carried out, the scientists drew blood from the rabbits, allowed it to clot, and collected the antiserum.

The reactants for Pauling’s experiments – immunizing antigens and simple antigens – were either purchased or prepared by Pauling and his collaborators, typically the graduate students.

For each precipitation test, equal portions of antiserum and a saline solution containing a simple antigen were mixed together. Typically, four to six different concentrations of antigen were used. The mixtures stood at room temperature for one hour, then were refrigerated overnight. The next day, a centrifuge was used to separate out the precipitates, which were then washed with saline solution and analyzed. Pauling’s method of analysis involved measurements of nitrogen, arsenic, carbon, and hydrogen. From there, the amount of a given antibody in the precipitate was determined using the nitrogen measurements.

The initial set of experiments used twenty-seven different compounds as the antigen, each containing between one and four haptenic groups. All of the polyhaptenic substances – those that had more than one haptenic group per molecule – formed precipitates, but none of the monohaptenic substances did. This finding supported the framework theory, devised by the British chemist John Marrack in 1934, that postulated that multivalent antibody molecules could combine with polyhaptenic molecules to form large aggregates, which would become precipitates. On the other hand, Marrack suggested, if multivalent antibody molecules combined with monohaptenic molecules, only small complexes would form and these would not precipitate.

Pauling summarized this work in a set of four papers that were published in the December 1942 issue of the Journal of the American Chemical Society.


John Richardson Marrack

Pauling’s first article, “Precipitation Reactions between Antibodies and Substances Containing Two or More Haptenic Groups,” served primarily to provide support for Marrack’s framework theory. Eight years before, Marrack had stated that antibodies were multivalent; in other words, they can bond to more than one antigen molecule. In order for them to bind in this way, the molecules must be properly oriented such that the binding sites fit together. This causes the formation of a lattice-like structure which grows until it is too large to stay in solution and precipitates out.

As noted above, Pauling’s experiments found that “simple antigens containing two or more haptenic groups per molecule were found to give precipitates with the antisera, whereas the seven monohaptenic substances failed to precipitate,” a discovery that confirmed the validity of the Marrack-Heidelberger framework, or lattice theory.

The second paper in this installment was titled “The effects of changed conditions and of added haptens on precipitation reactions of polyhaptenic simple substances.” The alterations to conditions that were tested by Pauling included allowing the mixture to rest longer, changing its temperature, and altering its pH. Having confirmed his own belief, in Paper I, that antibodies are multivalent, Pauling used Paper II to first note his assumption – and provide evidence for – bivalence.

In addition, Pauling used this paper to publish an equation that could be employed to find the amount of a precipitated compound in a given solution based on solubility, equilibrium constant, and total amount of hapten. Notably, the equation led Pauling to deduce “that in each case the maximum amount of precipitate is produced by an amount of antigen approximately equal to the amount of antibody,” an idea that unfolded more fully in the following paper.


The equation published by Pauling in Paper II.

Paper III, “The composition of precipitates of antibodies and polyhaptenic simple substances; the valence of antibodies,” further explores the supposition of bivalence through an examination of the ratio of antibody to antigen in precipitates.

While the bulk of Pauling’s experiments focused on dihaptenic antigens, some used trihaptenic antigens, and others used tetrahaptenic antigens. Through careful analyses of the different precipitates that resulted, Pauling was able to determine that the ratio of antibody to antigen in any given precipitate was approximately 1:1.

This finding suggested that most antigens could have only two antibody molecules attach to them, even if they possessed more than two haptenic groups, since the antibody molecules were relatively large and interfered with one another’s attachment. Pauling also used the one-to-one ratio to conclude that most antibody molecules possess two binding sites. The major development of this paper – the near one-to-one ratio – was “taken to indicate bivalence of most of the antibody molecules.”

The last paper of the first installment, Paper IV, reported the results of initial experiments on the inhibition of precipitation in the presence of hapten. Pauling and his colleagues had tested precipitate inhibition in three basic ways: by altering temperature, by augmenting the amounts of hapten present in their mixtures, and by isolating the effects of twenty-four specific haptens. These experiments found that adding haptens to a mixture of antibodies and antigens inhibited the precipitation of the antibody-antigen complex.

Furthermore, Pauling concluded that the structure of the haptens correlated with their inhibition power and detailed the relative values of each hapten’s bond strength. He then used the hapten inhibition data from these experiments to update his earlier equation for finding the amount of antibody precipitated.

Next week, we’ll examine eight more papers that Pauling published on the topic over the next three years and explore the ways in which this body of research evolved and expanded during that time.