Remembering Harvey Itano

Portrait of Harvey Itano, 1954. Image courtesy of the Caltech Institute Archives.

“The discovery by Dr. Itano of the abnormal human hemoglobins has thrown much light on the problem of the nature of the hereditary hemolytic anemias, and has changed these diseases from the status of poorly understood and poorly characterized diseases into that of well understood and well characterized diseases.”

-Linus Pauling, 1955.

We were saddened to learn of the death of Harvey A. Itano, emeritus professor of pathology at the University of California, San Diego.  Dr. Itano passed away on May 8, 2010 at the age of 89.

Best known professionally for his work on sickle cell anemia, Itano’s early personal history makes for fascinating reading.  According to this excellent obituary issued by UCSD

Itano was born in Sacramento, CA on November 3, 1920, the oldest of four children of Masao and Sumako Itano, originally of Okayama-ken, Japan.  A star student at UC Berkeley, he graduated in 1942 with highest honors in chemistry.  He was unable to attend his own graduation ceremony, because he and his family were confined to internment camps established after the bombing of Pearl Harbor for the detention of Japanese and Japanese-Americans living in the western US.  In recognition of his outstanding achievements as a student, having earned the highest academic record in his class, then-UC President Robert Gordon Sproul personally awarded him the University Medal during his internment.

[…] He was released from the camp on July 4, 1942, the first of the Nisei (second generation Japanese-Americans) to be released to attend colleges and universities.  He attended the St. Louis School of Medicine, where he earned his MD in 1945 before continuing his studies at California Institute of Technology, earning a PhD in Chemistry and Physics in 1950.

It was at Caltech that Itano came into contact with Linus Pauling, his major professor during his doctoral studies and research colleague for the duration of a four year post-doctoral stint in Pasadena.  Over the course of this time period, Itano, Pauling and their collaborators made a series of significant contributions to the field of molecular biology.

Most prominent among these contributions was a 1949 paper published in Science, titled “Sickle Cell Anemia, A Molecular Disease.”  Authored by Pauling, Itano, S. Jonathan Singer and Ibert C. Wells, the paper presented experimental evidence in support of Pauling’s theory that sickle cell anemia could be traced to significant abnormalities in the hemoglobin molecules of those suffering from the disease.  The paper was quickly recognized to be the first solid proof of the existence of a “molecular disease.”

In his book Force of Nature, Pauling biographer Thomas Hager comments on the importance of this discovery.

People had theorized in broad terms about the molecular basis of disease before, but no one had ever demonstrated it the way Pauling’s group did….By pinpointing the source of a disease in the alteration of a specific molecule and firmly linking it to genetics, Pauling’s group created a landmark in the history of both medicine and molecular biology.

Itano spent much of his long career furthering the breakthroughs signaled in the 1949 paper.  Among other achievements, he developed a “rapid diagnostic test” for sickle cell anemia which would quickly indicate whether or not a given blood sample would sickle.  With S. J. Singer, Itano also described the condition of sicklemia, an intermediate and less severe stage of sickle cell anemia in which a patient’s blood contains a mix of normal hemoglobin and sickled hemoglobin cells.

Harvey Itano and Linus Pauling. 1980s.

Linus Pauling held Itano in high regard, both as a scientist and as a person.  In a lengthy award nomination that Pauling composed for Itano in 1955, Pauling describes the specifics of Itano’s contribution to the team’s molecular disease breakthrough while noting his “great natural ability and thoroughly sound training in chemistry and related sciences as well as in medicine.”  Of the man, Pauling wrote

His success must also be attributed in part to his excellent personality.  He is quiet and pleasant in manner, and is well liked by all of his associates.  During his eight years at the California Institute of Technology he made many friends, and he was uniformly successful in effective collaboration with a number of co-workers.  He is original, clearheaded, keen, and critical in his scientific work.

Itano maintained a keen interest in his rich genealogical background, and those who wish to learn more about his story are encouraged to visit the Itano family history website.  A great deal more about Itano’s role in the sickle cell anemia and molecular disease story is likewise available at It’s in the Blood!  A Documentary History of Linus Pauling, Hemoglobin and Sickle Cell Anemia.

Advertisements

The Importance of the Concept of Molecular Disease

The idea of Dr. Linus Pauling that an abnormal hemoglobin molecule might be responsible for the sickling process initiated the study of the hemoglobin molecule in hereditary anemias.
– Harvey Itano. “Clinical States Associated with Alterations of the Hemoglobin Molecule.” Archives of Internal Medicine, 96: 287-97, 295. 1955.

During his lengthy career, Linus Pauling maintained a long-running interest in the relationships between chemistry and the human body. In the mid-1930’s, he began to work extensively with the hemoglobin molecule. As we’ve seen in previous posts, this research would eventually lead to many important discoveries and his coining of the term “molecular disease.”

Sickle cell anemia was the first disease to be classified as a molecular disease. As was mentioned in this post, Pauling first learned of the disease in the spring of 1945 when Dr. William B. Castle, a physician and Professor of Medicine at Harvard University, described it at a meeting of the Medical Research Association. As Dr. Castle listed off the characteristics of the disease, Pauling, through the prism of his deep knowledge of the structural chemistry of hemoglobin, developed an almost-immediate formulation of sickle cell anemia as a disease of the hemoglobin molecule, rather than of the entire blood cell.

Listen: William Castle recounts his first meetings with Linus Pauling…

Listen: …and Pauling responds in kind

A few months later, Pauling would pass this idea on to Harvey Itano, who was completing his doctorate in chemistry at Caltech. Itano conducted a series of initial experiments on the hemoglobin molecule, all of which failed. After months of tedious investigation, however, Itano, Dr. S. J. Singer and Dr. Ibert C. Wells – both of them newly-minted Ph.D.’s – were able to use the techniques of electrophoresis to identify a significant distinction. The paper “Sickle Cell Anemia, a Molecular Disease” was then published in the fall of 1949 and the concept of molecular disease was instantly established.

Listen: Pauling describes the Itano, Singer and Wells electrophoresis experiments

Although Pauling wasn’t the first to think about diseases in terms of molecular aberrations, no one prior to the Pauling-Itano group had concretely demonstrated their existence. After their initial success, Singer and Itano continued to expand on the original research, eventually discovering a less-severe case of sickle cell anemia called sicklemia. The duo also described the manner in which sickle cell anemia is inherited. As such, not only did Pauling and his colleagues identify the exact source of the disease, they also provided a link to genetics and confirmed Pauling’s view that analysis on a molecular level can provide valuable information. Later, Itano would discover more abnormal hemoglobin molecules, and the molecular analysis of diseases would continue.

Since Pauling’s coining of the term “molecular disease,” many other diseases have been similarly categorized: Hemophilia, Thalassemia, Alzheimer’s Disease and Muscular Dystrophy to name a few. (Though it could also be argued that every heritable disease can be classified as a molecular disease because these diseases require a modified genetic component that can be passed from parent to child.)

Thalassemia, for example, is also a disease of the hemoglobin molecule. However, while sickle cell anemia is caused by the production of abnormal hemoglobin, Thalassemia, conversely, involves the abnormal production of hemoglobin. More specifically, in cases of Thalassemia, the rate of production of a specific globin chain is decreased, which then causes the formation of abnormal hemoglobin molecules.

Pauling’s conceptualization of sickle cell anemia as a disease of the hemoglobin molecule jump-started years of research pertaining to abnormal hemoglobins and opened many new doors in the study of inherited diseases. Although he wasn’t directly involved in the discovery of the abnormal hemoglobin molecules, Pauling’s development of the concept of molecular disease was achievement enough to significantly raise his stature in the medical community (at least for a while) and further cement his status as a scientist of world-historical importance.

For more information on molecular disease and other related topics, please visit the website “It’s in the Blood! A Documentary History of Linus Pauling, Hemoglobin, and Sickle Cell Anemia.”