First Years as Division Chair: Making Recommendations, Coping with an Explosion, and Bringing Aboard Zechmeister

[Pauling as Administrator]

With its brand new building and innovative, well-funded research program, the Division of Chemistry and Chemical Engineering at the California Institute of Technology, under the leadership of Linus Pauling, was increasingly coming to be recognized as a model for chemistry departments and divisions around the country.

This boost is stature is clearly evident in Pauling’s correspondence. In one instance, John C. Bailar, Jr., Assistant Professor and Secretary of the Department of Chemistry at University of Illinois, Urbana, wrote to ask about ways in which they could follow Caltech’s model to improve their own research and instruction. Likewise, Joseph George Cohen, Director of the Division of Graduate Studies at Brooklyn College, noted his ambition to “pattern [their] administrative practices on those schools which occupy a position of leadership in American Chemistry,” and asked how Caltech ran its laboratories and what responsibilities they gave to their PhDs and graduate assistants. Pauling was always willing to give his advice.


Pauling’s recommendations were also commonly sought by other programs looking to hire new staff. Although his picks were not always a match, Pauling increasingly found himself in a position to influence the shape of research around the country. During the fall of 1938 for instance, Pauling recommended a professional colleague, Gilbert King, to fill a position at Duke University. King ended up going to Yale and then MIT instead. After learning that King would not be coming, Paul Gross of Duke again reached out to Pauling, asking for another name.

Lindsay Helmholz

This second time around, Pauling leaned more heavily on his role as division chair and began advocating for an up-and-comer within the division. This individual was Lindsay Helmholz, whom Pauling described as “one of our best men.” Though he was reluctant to lose Helmholz’ skillset, Pauling worked hard in selling him to Gross, highlighting his research and teaching skills while also emphasizing the range of material that Helmholz was familiar with, including topics in physical, structural, and general chemistry. Pauling further pressed Gross to offer Helmholz a permanent position, as he would be more likely to accept it. For added measure, Pauling noted that “Dr. Helmholtz is married to a very pleasant and attractive young woman, and I am sure you would consider the Helmolzes an addition to your community.”

Helmholz ended up not going to Duke, leading Pauling to recommend him again the following summer to Elden B. Hartshorn of the Department of Chemistry at Dartmouth College. Pauling once more praised Helmholz’ ability to teach advanced courses and lauded his experimental and theoretical research skills. And as with his communications to Paul Gross, Pauling concluded with more personal information

Dr. Helmholz is a pleasant and cultured young man and is married to a pleasant and cultured young woman. His father is head of the pediatrics division of the Mayo Foundation at Rochester.

Hartshorn responded that they were looking for someone for the following year and hinted that they may not have the facilities to support Helmholz’ research. Helmholz ultimately ended up at Washington University after working on the Manhattan Project during World War II.

Pauling saved his second-tier recommendations for less prestigious institutions, like the Department of Chemistry at his alma mater, Oregon Agricultural College. In this instance, F.A. Gilfillan, Dean of the School of Science at OAC, was looking for teaching fellows in 1939 and was eager to receive any ideas that Pauling might have in mind. In response, Pauling recommended Robert J. Dery, who had taught at Caltech for three years but had not completed his doctorate since he seemed “for some reason to lack the ability to carry on experimental research.” Dery, according to Pauling, was also “slow spoken, so that in conversation with him one may become impatient.” This habit did not affect Dery as a teacher however, as he spoke very well in front of an audience and, in Pauling’s estimation, was a good freshman instructor.


By April 1939, as the funding from the Rockefeller grant approached its second year, Pauling and Warren Weaver were still looking for someone to head biochemical research being supported by the grant. Pauling asked Weaver if he might further delay the hiring as no clear-cut match for the position had been identified. That June, the Rockefeller Foundation’s Board of Trustees, while discussing the following year’s budget, noticed that no one had been hired and questioned the need to approve the full $70,000 request for the following year. Ultimately the board agreed to the original request, but their hesitation to do so led Pauling to scramble.


Pauling’s notes on the August 1939 explosion. Note in particular his closing sentence: “Koepfli heard the explosion at his home, nearly a mile away.”

In the meantime, Pauling continued to deal with the more mundane responsibilities that were assigned to him as chair. These included a wide range of hiccups presented by the move into the new Crellin Laboratory. One specific issue was the need to make sure that graduate students could access particular areas of the facility – most pressingly the student shop – that were normally only open during business hours. To solve the problem, Pauling requested that a lock be made for the shop that matched the locks on Crellin’s entry doors so that the students could enter more easily.

A much larger problem came to pass in August 1939, when a spark from a ventilating system motor ignited six liters of spilled ether in Crellin Room 351. Leo Brewer, who was in the room at the time, had been working with a twelve liter flask of ether on a ring stand. When he went to adjust the position of the flask on the stand, the bottom fell out of the flask. Brewer cleaned up the ether as best he could, but about five minutes later, as he wrote in his incident report, “suddenly there was a flash of fire which singed my hair, face, and hands.” He immediately left the room and “five seconds later there was an explosion which rocked the building” as the hoods sucked up the flames, igniting the ten gallons of ether in them. Students and stockroom workers equipped with gas masks and fire extinguishers combated the flames until firefighters arrived. In the midst of it all, a second explosion knocked over acid bottles, leading to reactions that produced poisonous gas. All told, the damage was assessed at $13,924.22 (the equivalent of more than a quarter-million dollars today).


Laszlo Zechmeister with the Pauling family, 1940.

While dealing with all of Crellin’s issues, Pauling also had to respond to increasing pressure from the Rockefeller board to find someone to head biochemistry research within the division. The more he thought about it, the more Pauling leaned toward hiring Hungarian chemist Laszlo Zechmeister, who had visited the previous fall. While current staffer Carl Niemann had shown promise, Pauling thought him too young to head the fledgling biochemical research program. Zechmeister, who was in his fifties, was arguably too old, but Pauling began to see his age as an advantage since he was certain someone would emerge from within Caltech itself to lead the program over the next ten to twenty years.

Zechmeister had maintained a correspondence with Pauling since his visit, keeping him informed in particular of Hungary’s increasingly close relationship with Nazi Germany. Zechmeister also told Pauling that, if there were a position available for him elsewhere, he would take it immediately. Pauling finally offered Zechmeister a professorship in organic chemistry in October 1939, which was quickly accepted. The only sticking point was that the contract needed to stipulate that the appointment was for one year only, as that was the longest period of time that Zechmeister was legally allowed to leave Hungary. Sadly, Zechmeister’s wife became sick before they came to Pasadena in 1940, and died the following year. And ultimately Zechmeister would not return to Hungary, spending the remainder of his career at Caltech.


Just two and a half years into his tenure as Chairman of the Division of Chemistry and Chemical Engineering at the California Institute of Technology, Pauling saw to completion a variety of plans originally set in motion by his predecessor A.A. Noyes, including the construction of a new building. With the onset of the Second World War, an influx of federal funding would create new opportunities as more researchers and projects filled out the division’s buildings. With observations made and lessons learned along the way, the war would also set the stage for Pauling to build off of what he had inherited and take the initiative in further shaping the division.

Building the Crellin Lab (and keeping it standing)

Image of the Crellin Laboratory taken around the time of its dedication in 1938.

Image of the Crellin Laboratory taken around the time of its dedication in 1938.

[Celebrating the 75th anniversary of the dedication of the Crellin Laboratory at the California Institute of Technology.  Part 2 of 3]

During the 1930s, the Biology and Chemistry departments of the California Institute of Technology grew substantially, in part because of major support received from the Rockefeller Foundation. One of the most visible and dramatic examples of this growth spurt was the new Crellin Laboratory of Chemistry, an addition to the older Gates Laboratory of Chemistry. The new Crellin lab was under construction by 1937, set to be finished in 1938.

Indeed, 1938 was a big year for Caltech. Largely because of the efforts of Linus Pauling, the Rockefeller Foundation donated the huge sum of $800,000 to support research. Of that substantial amount, $250,000 was set aside to fund work in the new Crellin and Gates labs for the following five to seven years. The entire effort was in support of the Foundation’s “Science of Man” agenda, a cultural and scientific enterprise which has since proven to be somewhat controversial, due to the fact that a guiding principle of the project was eugenics.

Support for the study of eugenics largely lost credibility in the United States (and globally), after World War II and the widespread practice of eugenics by the Nazis. Specific to the U.S. concern, Nazi leadership testifying at the Nuremberg War Crimes Trials cited American eugenics programs as being an inspiration and justification for their own programs, a declaration that horrified many Americans. Despite this sudden and dramatic distaste for eugenics – as historian Lily Kay and others have pointed out – the Science of Man agenda remained intact well after World War II had ended.

But in the Depression years of the late 1930s, funding from the Rockefeller Foundation continued to be instrumental and Caltech continued to hold a privileged position. From 1930-1955, Caltech was one of six schools that received the lion’s share of the Foundation’s research money allocations. In that time, Caltech and the University of Chicago received $5 million, Stanford and Columbia University received $1 million, and Harvard and the University of Wisconsin received $500,000.

By early 1938, construction of the Crellin laboratory was complete. The new building was three stories tall with two basements and contained over fifty rooms. The second and third floors were entirely dedicated to organic chemistry, a major passion of A. A. Noyes’, while the first floor and basements were set aside for physical chemistry. The lab was dedicated on May 16, 1938, and immediately began working productively. The years 1938 and 1939 both proved to be very fruitful, with substantial amounts of useful research conducted. But this otherwise excellent record was marred in the summer of 1939 by a very scary incident.

Pauling's notes on the 1939 explosion.

Pauling’s notes on the 1939 explosion. Note the final sentence: “Koepfli heard the explosion at his home, nearly a mile away.”

On August 10, 1939, two Caltech researchers, Leo Brewer and Thurston Skei, were conducting an experiment in room 351 of the Crellin Laboratory. In the midst of their work the bottom of a container fell off, spilling six liters of liquid ether all over the floor. Brewer and Skei quickly cleaned the spill up, and checked to make sure the room was safe, which it appeared to be.

At that point, Skei left the room to attend to matters elsewhere, leaving Brewer alone. Five minutes later, a spark from a motor running in the building’s ventilation ducts ignited ether fumes, which had been sucked into the ventilation system. The air in room 351 quickly ignited, severely burning Brewer, who immediately, and fortunately, ran from the room. Three seconds later, the lockers, desks, and storage containers in room 351, filled with flammable gasses and liquids, exploded, destroying all the windows on that half of the floor and blowing apart the room’s main entry door as well as part of a wall. Additionally, five other rooms sustained damage from the explosion.

Leo Brewer, 1950.

Leo Brewer, 1950.

As if that weren’t enough, the ventilation fans in the fume hoods in Crellin 351 sucked the flames upward into the hoods, which ignited another set of drums containing ten gallons of liquid ether, in turn starting a massive fire which spread to two adjacent rooms. The force of the explosion had also shattered almost every piece of glass on the entire floor and knocked over numerous storage shelves. As a result, various chemicals began to mix, and the entire third floor began to flood with poisonous gasses.

In quick response, graduate students and staff alike grabbed gas masks and fire extinguishers, and charged up to the third floor. Amazingly, they succeeded in containing the fire and prevented it from spreading into even more adjacent rooms, including the building’s library. They also managed to extinguish the burning walls in the main hallway. Not long after, the Pasadena Fire Department arrived, and firemen ran into room 351, which was furiously ablaze due to the drums containing the ten gallons of ether. The firefighters ripped 351’s fume hoods out of the wall with axes and eventually extinguished the last of the fire.

In the aftermath, Pauling passed along word of the explosion to several of his colleagues, though did his best to downplay it when communicating the news, seven days after the fact, to his main contact at the New York-based Rockefeller Foundation, Warren Weaver.

Perhaps you read in the papers that we had a fire in the Crellin Laboratory. Fortunately no one was injured and the damage was restricted almost entirely to the undergraduate organic laboratory, with very little research lost. We had complete insurance coverage and shall have the laboratory in shape for the students when the Institute opens next month.

In reality, the explosion and ensuing fire had destroyed almost $3,300 worth of equipment, and by the time the rather extensive repairs were done, the accident had cost about $14,000. Fortunately nobody was killed – Brewer was the only injury, and he made a full recovery. It is worth noting that lab fires were common enough at the time that the emergency procedures for the lab only required personnel to call the fire department if the staff and graduate students on hand couldn’t contain the fire themselves.

Regardless, Caltech quickly regained its footing. After the repairs were done, the labs continued with their research, and made major contributions during World War II and after.