The Importance of the Concept of Molecular Disease

The idea of Dr. Linus Pauling that an abnormal hemoglobin molecule might be responsible for the sickling process initiated the study of the hemoglobin molecule in hereditary anemias.
– Harvey Itano. “Clinical States Associated with Alterations of the Hemoglobin Molecule.” Archives of Internal Medicine, 96: 287-97, 295. 1955.

During his lengthy career, Linus Pauling maintained a long-running interest in the relationships between chemistry and the human body. In the mid-1930’s, he began to work extensively with the hemoglobin molecule. As we’ve seen in previous posts, this research would eventually lead to many important discoveries and his coining of the term “molecular disease.”

Sickle cell anemia was the first disease to be classified as a molecular disease. As was mentioned in this post, Pauling first learned of the disease in the spring of 1945 when Dr. William B. Castle, a physician and Professor of Medicine at Harvard University, described it at a meeting of the Medical Research Association. As Dr. Castle listed off the characteristics of the disease, Pauling, through the prism of his deep knowledge of the structural chemistry of hemoglobin, developed an almost-immediate formulation of sickle cell anemia as a disease of the hemoglobin molecule, rather than of the entire blood cell.

Listen: William Castle recounts his first meetings with Linus Pauling…

Listen: …and Pauling responds in kind

A few months later, Pauling would pass this idea on to Harvey Itano, who was completing his doctorate in chemistry at Caltech. Itano conducted a series of initial experiments on the hemoglobin molecule, all of which failed. After months of tedious investigation, however, Itano, Dr. S. J. Singer and Dr. Ibert C. Wells – both of them newly-minted Ph.D.’s – were able to use the techniques of electrophoresis to identify a significant distinction. The paper “Sickle Cell Anemia, a Molecular Disease” was then published in the fall of 1949 and the concept of molecular disease was instantly established.

Listen: Pauling describes the Itano, Singer and Wells electrophoresis experiments

Although Pauling wasn’t the first to think about diseases in terms of molecular aberrations, no one prior to the Pauling-Itano group had concretely demonstrated their existence. After their initial success, Singer and Itano continued to expand on the original research, eventually discovering a less-severe case of sickle cell anemia called sicklemia. The duo also described the manner in which sickle cell anemia is inherited. As such, not only did Pauling and his colleagues identify the exact source of the disease, they also provided a link to genetics and confirmed Pauling’s view that analysis on a molecular level can provide valuable information. Later, Itano would discover more abnormal hemoglobin molecules, and the molecular analysis of diseases would continue.

Since Pauling’s coining of the term “molecular disease,” many other diseases have been similarly categorized: Hemophilia, Thalassemia, Alzheimer’s Disease and Muscular Dystrophy to name a few. (Though it could also be argued that every heritable disease can be classified as a molecular disease because these diseases require a modified genetic component that can be passed from parent to child.)

Thalassemia, for example, is also a disease of the hemoglobin molecule. However, while sickle cell anemia is caused by the production of abnormal hemoglobin, Thalassemia, conversely, involves the abnormal production of hemoglobin. More specifically, in cases of Thalassemia, the rate of production of a specific globin chain is decreased, which then causes the formation of abnormal hemoglobin molecules.

Pauling’s conceptualization of sickle cell anemia as a disease of the hemoglobin molecule jump-started years of research pertaining to abnormal hemoglobins and opened many new doors in the study of inherited diseases. Although he wasn’t directly involved in the discovery of the abnormal hemoglobin molecules, Pauling’s development of the concept of molecular disease was achievement enough to significantly raise his stature in the medical community (at least for a while) and further cement his status as a scientist of world-historical importance.

For more information on molecular disease and other related topics, please visit the website “It’s in the Blood! A Documentary History of Linus Pauling, Hemoglobin, and Sickle Cell Anemia.”

Pauling’s Theory of Sickle Cell Anemia

It's in the BloodWe owe to Pauling and his collaborators the realization that sickle cell anaemia is an example of an inherited ‘molecular disease’ and that it is due to an alteration in the structure of a large protein molecule, an alteration leading to a protein which is by all criteria still a haemoglobin.
– Vernon M. Ingram, 1957.

Of the four Documentary History websites that the OSU Libraries Special Collections has produced, “It’s in the Blood!  A Documentary History of Linus Pauling, Hemoglobin and Sickle Cell Anemia” is, in certain respects, the most unique.

For one, “the blood site” — its usual in-house appellation — is the only of our Documentary Histories not to have been written by Pauling biographer Tom Hager.  On the contrary, the idea for the blood site arose out of a history of science master’s thesis that Melinda Gormley — then a graduate student and now a professor at OSU — developed from research done in the Ava Helen and Linus Pauling Papers. As Dr. Gormley documented in this article (PDF, see pp. 8-9) it took the better part of two years to repurpose the text of her dissertation into a format suitable for the web.

Gormley’s thesis topic was relatively broad — “The Varieties of Linus Pauling’s Work on Hemoglobin and Sickle Cell Anemia,” (PDF, 1.8 MB) — and, as a result, the swath of content covered in the website is similarly wide.  The website begins its narrative in 1930, ends it in 1994, and along the way discusses Pauling’s contributions to areas ranging from immunology to Scientific War Work to evolutionary theory to orthomolecular psychiatry.  All of these topics will be addressed in future posts on this blog.

The heart of the blood site, however, is Pauling’s research on sickle cell anemia. Sickle cell anemia is a terrible disease that predominantly effects inhabitants of sub-Saharan Africa or those who can trace their lineage to that region.  The disease is a painful one, characterized by drastically-malformed red blood cells, and manifesting itself in a host of health maladies and, often, shortened lifespans.

Many folks who are semi-acquainted with the Pauling legacy know that he was, in some way, important to the modern understanding of sickle cell anemia.  But how? Well, Linus Pauling was the first individual to correctly theorize that sickle cell anemia is a disease that locates its source to the molecular level — in the process Pauling likewise became the first individual to postulate the concept of a molecular disease.

What then, exactly, was Pauling’s theory of sickle cell anemia?  That is the question that we aim to explore in this post.

Linus Pauling probably wasn’t a true freak-of-nature genius in the manner of an Einstein or a Mozart.  On the contrary, the likely secret of his profound success as a scientist was at least threefold in nature: 1) he possessed a relentless work ethic; 2) he was a very clear and concise thinker who conceptualized his ideas well and understood the efficiencies inherent to leading teams of researchers as opposed to going it alone; 3) and most importantly, he was deeply interested in, and capable of concretely understanding, radically-disparate areas of scientific study.  All three of these traits reveal themselves in the sickle cell anemia story.

Pauling first encountered the problem of sickle cell anemia rather by accident.  At a dinner in 1945, Pauling sat in the audience of an informal presentation by physician Dr. William Castle, wherein it was noted that the shape of red blood cells in sickle cell patients varied depending on whether the blood was venous or arterial —  normal in arterial blood, sickled in venous blood.  Clearly this suggested that the oxygen content in sickle cell blood played a major role in its molecular architecture. By his own recollection, “within two seconds,” Pauling concluded that the oxygen piece of the equation suggested that hemoglobin must be involved in the sickling mechanism — a conclusion that he could reach because of his keen understanding of the structural chemistry of hemoglobin.

In 1960, Pauling provided this description of his initial thoughts on how malformed hemoglobin could lead to sickled red blood cells.

…immediately I thought, “could it be possible that this disease, which seems to be a disease of the red cell because the red cells in the patients are twisted out of shape, could really be a disease of the hemoglobin molecule?” Nobody had ever suggested that there could be molecular diseases before, but this idea popped into my head. I thought, “could it be that these patients can manufacture a special kind of hemoglobin such that the molecules are sticky and clamp on to one another to form long rods, which then line up side by side to form a long needle-like crystal, which as it grows inside of the red cell becomes longer than the diameter of the cell and thus twists the red cell out of shape?”

From here, Pauling delegated many of the details necessary to verifying his thinking on the sickle cell problem to a team of Caltech graduate students led by Harvey Itano.  (This was common practice for Pauling, and helps explain how he was able to generate over 1,100 published papers in ninety-three years of living)  Using a variety of methods including electrophoresis, the Itano team, in the words of a 1950 Caltech press release

found a difference – slight but still unmistakable – between normal hemoglobin and that of a sickle-cell anemia patient.  Sickle-cell hemoglobin proved to have a greater positive electrical charge, under the proper chemical conditions, than did the hemoglobin from a normal person.  Such a difference in electrical properties can only mean a difference in molecular architecture, in the way in which the hemoglobin molecules are constructed.

In other words, Pauling was right: sickle cell anemia was a molecular disease and malformed hemoglobin was the cause.

In 1956, an English chemist named Vernon Ingram, using a new technique called fingerprinting, (Pauling provides a rather technical description of the method here) proved conclusively that sickle cell anemia was an inherited disease as well.  Moreover, sickle cell anemia was found to be caused by an astonishingly small change at the molecular level.  Physicist John Hopfield described it this way

On the surface of the ten-thousand atom molecule, there is a slight change. A small group of a few atoms on the edge of the molecule is replaced by another small group of atoms. That’s all that happens – an exchange of a few atoms. Yet it’s enough to make people very ill. The effect of the change is to create a sticky point between an abnormal molecule and its neighbor, causing molecules to pile up on each other.

Just as Linus Pauling predicted, after dinner, in 1945.

Pauling’s Methodology: Electrophoresis

Diagram of a Tiselius electrophoresis apparatus.

Diagram of a Tiselius electrophoresis apparatus.

[Electrophoresis image extracted from the published version of Arne Tiselius’ Nobel lecture, December 13, 1948.  A digitized version of this lecture is available here courtesy of the Nobel Museum.]

The item of $7,500 for apparatus, supplies, animals would permit us to use the large number of animals required for some of our projected researches, and should permit also the construction of a Tiselius apparatus for the electrophoretic separation of antibody fractions by the suggested method of combination with charged haptens, and for other investigations.
– Linus Pauling, budget request letter to Warren Weaver. January 2, 1941.

Though, by the late 1930s, X-ray crystallography had become important to Linus Pauling’s research on the structure of complex organic proteins, the newly developed technique of electrophoresis eventually became the technology that defined his work on sickle cell anemia.  Indeed, Pauling was one of the first in a generation of scientists to effectively use the technique of electrophoresis to explain a biological phenomenon.

Lying at the core of Pauling’s interest in sickle cell disease was this question: What really made normal hemoglobin and the hemoglobin from someone suffering from sickle cell anemia different? Though Pauling and his fellow researchers theorized that the answer lay in differences between the structures of the hemoglobin molecules themselves, and also figured that magnetic properties somehow played a role, they had yet to find or develop a method suitable for testing their ideas.

As it turned out, Pauling and his colleagues had to do both: they found and they developed.

The Pauling group seized upon the new technique of electrophoresis but manipulated it considerably to fit their own research agenda. Pauling attributed the idea of using electrophoresis in the first place to one of his graduate students, Harvey Itano. Later Pauling and Itano sought advice, assistance and collaboration with others who were also using the technique, including Karl Landsteiner and Arne Tiselius, both accomplished researchers and close colleagues of Pauling’s. After the construction at Caltech of an electrophoretic machine, Stanley Swingle, a general chemistry instructor at the Institute, developed a number of mechanical improvements while Harvey Itano and Seymour Jonathon Singer conducted research using the apparatus.

After much trial and error, electrophoresis emerged as one of the more important experimental methods used to determine the difference in electrical charge between normal hemoglobin and sickle cell hemoglobin.

Listen:  Pauling discusses the evolution of electrophoresis work at Caltech

The results of Pauling’s electrophoretic experiments, reported in his group’s groundbreaking 1949 paper, “Sickle Cell Anemia, a Molecular Disease,” promoted the argument that sickle cell anemia was not only a pathology resultant of differential protein folding patterns, but that it was also inherited in a simple Mendelian pattern. In other words, sickle cell anemia was both ‘molecular’ and ‘genetic,’ and by seeing it as such, Pauling suggested certain therapies that directly addressed both the structural and the genetic components of the disease.

Even as late as the 1960s Pauling was still looking for ways to use electrophoresis in his research. He mentions, in a handwritten note, that of the ‘likely developments’ in biology, control of molecular and genetic diseases could possibly be obtained through the “electrophoresis of sperm.”

(Though the idea may sound strange today, Pauling was an advocate for the controversial notion of positive eugenics — that is the planned and controlled production of healthy offspring, primarily through genetic counseling. We’ll talk more about this component of Pauling’s thinking in a later post.)

In more ways than one, electrophoresis was a new technology that required the coordinated effort of a number of trained individuals. Though it took several years to fine-tune both the method and the instruments, the results were well worth the wait.

To learn more about Linus Pauling’s use of electrophoresis, please visit the website It’s in the Blood!  A Documentary History of Linus Pauling, Hemoglobin and Sickle Cell Anemia.