Linus Pauling. Lecturing at the Concepts of Chemical Bonding Seminar, Oslo University, Oslo, Norway. 1982.

Today marks the 110th anniversary of Linus Pauling’s birth, which occurred in Portland, Oregon on February 28, 1901. As has become tradition on the Pauling Blog, we are celebrating this occasion by looking back at Pauling’s life in increments of twenty-five years.


At the tender age of ten, young Linus was already at a crossroads in his life. First and foremost, his father Herman had died of a perforated ulcer the previous summer, thus throwing the Pauling family into something akin to chaos. Herman was a pharmacist and businessman of middling success, and his death was a source of major financial concern for his widow Isabelle and their three children, Linus, Pauline (age 9) and Lucile (age 7). From this point on, Linus’s childhood was certainly informed, if not dominated, by the continual need to contribute to the household income. His mother’s only asset of consequence was the family home, which she boarded out on a regular basis in an attempt to make ends meet. But as time passed and Belle’s own health faded, her only son was frequently called upon to assist with the family finances, leading Linus to assume any number of odd jobs, from delivery boy to film projectionist to grocery clerk.

Young Linus, ca. 1910s.

It was at this same time that the boy’s interest in science was beginning to flower. The previous year Herman had written a letter to the Portland Oregonian newspaper indicating that his son was a “great reader” keenly interested in ancient history and the natural sciences. In 1911 Pauling’s scientific impulses continued to flourish in the form of an insect collection that he maintained and classified using books checked out from the Portland library. Not long after, as with many scientists of his generation, Linus would develop an interest in minerals and begin compiling a personal collection of classified stones that he found.


By the age of thirty-five, Pauling had already established himself as among the world’s pre-eminent structural chemists and was well on his way to making a major impact in the biological sciences. In 1936 Pauling met Karl Landsteiner of the Rockefeller Institute, a Nobel laureate researcher best known at the time for having determined the existence of different blood types in human beings. In their initial meeting, Pauling and Landsteiner discussed Landsteiner’s program of research in immunology, a conversation that would lead to a fruitful collaboration between the two scientists. Importantly, his interactions with Landsteiner would lead Pauling to think about and publish important work on the specificity of serological reactions, in particular the relationship between antibodies and antigens in the human body.

Linus Pauling, 1936.

The year also bore witness to a major change at the California Institute of Technology: in June, Arthur Amos Noyes died. Noyes had served as chairman of the Caltech Chemistry Division for some twenty-seven years and was among the best known chemists of his era. His death ushered a power vacuum within the academic administration at Caltech, by then an emerging force in scientific research. Three of Pauling’s colleagues cautiously recommended to Caltech president Robert Millikan that Pauling be installed as interim chair of the department. Millikan agreed and offered the position to Pauling, but was met with refusal. At the time of the proposal,  Pauling was the object of some degree of criticism within the ranks at Caltech – certain of his peers felt him to be overly ambitious and even reckless in his pursuit of scientific advance – and the suggestion that Pauling assume division leadership was hardly unanimous. Millikan’s terms likewise did not meet with Pauling’s approval; in essence he felt that he would be burdened with more responsibility but would not gain in authority. The impasse would not last long however, as Pauling would eventually accept a new offer in April 1937 and begin a twenty-one year tenure as division chief.


A busy year started off with a bang when the sixty-year-old Pauling was chosen alongside a cache of other U.S. scientists as “Men of the Year” by Time magazine. By this period in Pauling’s life his peace activism was a topic of international conversation and early in the year Linus and Ava Helen followed up their famous 1958 United Nations Bomb Test Petition with a second “Appeal to Stop the Spread of Nuclear Weapons,” issued in the wake of nuclear tests carried out by France. As a follow-up, the Paulings organized and attended a May conference held in Oslo Norway, at which the attendees (35 physical and biological scientists and 25 social scientists from around the world) issued the “Oslo Statement,” decrying nuclear proliferation and the continuation of nuclear tests.

Group photo of participants in the Oslo Conference, 1961.

While Pauling’s attentions during this period were increasingly drawn to his peace work, he did make time for innovative scientific research. Of particular note was his theory of anesthesia, published in July in the journal Science. Pauling’s idea was that anesthetic agents formed hydrate “cages” with properties similar to ice crystals. Owing to the nature of their molecular structure, these cages would impede electrical impulses in the brain, thus leading to unconsciousness. In a review article published one year later, the pharmacologist Chauncey Leake described the theory as “spectacular,” though for reasons that are still unclear it failed to gain traction with the larger scientific community.


By age eighty-five, Pauling’s interests centered largely upon his continuing fascination with vitamin C. Having already published monographs focusing upon ascorbic acid’s capacity to ward of the common cold and the flu, Pauling was ready to put his thinking together into a general audience book that would discuss the path to happier and healthier lives. The result was How to Live Longer and Feel Better, a modest critical and commercial success that helped bolster the reputation and the finances of the struggling Linus Pauling Institute of Science and Medicine.

Pauling at 85.

Many of the recommendations that Pauling made in How to Live Longer… were fairly typical of most health promotion books: a sensible diet, regular exercise and no smoking. The major exception to this moderate approach was the famed author’s stance on vitamin supplementation. In biographer Thomas Hager‘s words

Pauling was now advising between 6 and 18 grams of vitamin C per day, plus 400-16,000 IU of vitamin E (40-160 times the RDA), 25,000 IU of vitamin A (five times the RDA), and one or two ‘super B’ tablets for the B vitamins, along with a basic mineral supplement.

This staunch belief in the value of megavitamins would stay with Pauling until his death eight years later, in August 1994.