Peter Pauling: A New Life in London, 1956-1969

1961i.56

Peter Pauling, speaking at his father’s sixtieth birthday party, Los Angeles, 1961.

[The life of Peter Pauling, part 7 of 9]

Journeying on their honeymoon through the caves of northern Spain, Peter Pauling and his wife Julia arrived at a small fishing village and made camp. His beard full and his hair grown to nearly his shoulders, Peter sat on the beach, scouring pots. Meanwhile, Julia watched the water, contented by the meal that she had just prepared for her new husband. She had always loved the sea, saying as much in her letters to Linus and Ava Helen Pauling, her new parents-in-law.

Julia had been a bright student at Cambridge. An avid reader of French and German literature, she was once hailed as the year’s best student at Girton College and had received the highest marks possible in her first year examinations, an achievement that surely would have impressed Linus and Ava Helen. Given the circumstances of their marriage however, Peter and Julia had their work cut out for them in attempting to smoothing things over with both sides of the family. As she attempted to do so in her communications, Julia was especially complimentary of the Paulings’ new property at Big Sur. In particular, she swooned over the “heavenly” view of the Pacific Ocean, as observed from the coastal bluffs of California.


Upon their return to London, the pair moved into their new home in Clapham, which Peter described as “an ugly Victorian suburban house that ought to be quite pleasant.” Many things changed for Peter as he settled into his new life. With the help of his mother and younger brother Crellin, he shipped his Mercedes back to the United States where it would eventually be sold. He had likewise traded in his most recent automotive conquest, a Porsche, upon his and Julia’s return from their honeymoon. The proceeds from these sales and trades were used – with added financial help from Peter’s parents and his older brother Linus Jr. – to purchase a new home for the family at Lansdowne Road.

By July 1956, Peter and Julia were thinking of names for their baby, with Peter being “most uncooperative about this business,” according to his wife. In her letters to Ava Helen, Julia noted that every time she suggested a reasonable name, Peter demurred, offering alternative suggestions like “Gregorio” and “Plug-up,” the latter a character from what Julia considered a “pointless space-fiction strip cartoon.”

When finally the baby came on August 22, the pair had settled their differences. Peter Andrew Thomas Pauling, to be called Thomas, was born that summer, to be followed by a younger sister, born February 5, 1960. Again there seems to have been some measure of disagreement about a name, with Peter first announcing his daughter to his parents as “Esmiralda Ermitrude.”

That name didn’t stick, however, and within a month, Peter was writing to his mother and father that their new granddaughter, Sarah Suzanne, had begun to smile and sleep all night. It was one of many letters in which Peter expressed joy at being a father. Within five years, Peter would excitedly report that Sarah was reading bedtime stories to him, rather than the other way around. By this time, young Thomas was at the top of his class as well.


Peter and Julia enjoyed a great deal of support from friends and family during these early years. Typically, the couple would spend the Christmas holiday season with Julia’s parents in the north of England, while the Pauling family would usually visit at various points throughout the year. Occasionally, Peter’s sister Linda and her husband Barclay would see the young family, bringing their twin boys “Barkie” and “Sasha” in tow. Linus and Ava Helen often came through London while on European trips for conferences, bringing with them comfort items from the States as well as more important cargo, such as the polio vaccine.

Thomas and Dorothy Hodgkin stopped in regularly, as did the Cricks and the Bernals. Joy and J.D. Bernal gave Thomas his first toys and provided the cake for Sarah’s first birthday party. The Hodgkins offered Peter and Julia their old baby bath, and Francis and Odile Crick passed along some hand-me-down clothes. “So far,” Peter joked, “the entire cost of the baby has been one box of chocolates for the nurses.”

Even Jim Watson dropped in, meeting young Thomas, who loved to turn all the knobs on a sprawling electronic gramophone that Peter had pieced together from spare parts. The room was a hopeless mess, Watson noted, and surely the bane of Julia’s existence. On top of that, Thomas’ interventions generally scrambled the music until it was incomprehensible.


Buoyed by a little help from his friends, Peter’s career took a positive turn as well. Lawrence Bragg had agreed to take Peter on at the Royal Institution for three months, in order to allow him to finish his degree. When three months turned out to be not enough time, Bragg and John Kendrew conspired with their colleague Jack Dunitz to obtain for Peter a position as a research student, working under R.S. Nyholm at University College, London. Once there, Peter would be allowed to continue his education while simultaneously collaborating with Dunitz to complete his research.

The arrangement worked. Peter switched the focus of his dissertation from protein crystallography to inorganic molecules, using x-ray diffraction to verify configurations of a halide compound, NiCL4. Peter likewise worked with a number of other transition metals, performing stereochemical experiments to determine their atomic structures.

At the same time, Peter began working with his father to develop a theory of the molecular structure of water, a subject on which he had spoken at a meeting of the Royal Society in 1957. After the two Paulings developed their theory, which postulated a random dodecahedral structure for liquid water, Peter became quite prolific. Throughout the late 1950s and 1960s, he published just over thirty papers, including fourteen in 1966 alone.

He also became much more active in the field, flying often to the United States for meetings of the Crystallographic Association, as well as other conferences in locations from San Diego to Denver to Pittsburgh. Having completed his PhD in 1959, Peter was immediately offered a lectureship in Chemistry at University College. And though he continued to muse in his letters to Ava Helen that he really didn’t want to do chemistry forever, he quickly accepted the position.


1963i.5-julia-peter

Julia and Peter Pauling at the 1963 Nobel Peace Prize ceremony in Oslo.

At long last, Peter seemed finally to be stepping out from his father’s shadow. And importantly, one sign of this transformation was his own realization that he was not, and could never be, the chemist that Linus Pauling was.

Instead, Peter began to focus his efforts on computers and other electronic systems valuable to the lines of chemical research that he had been pursuing. Among the rash of papers that he published in 1966 was “A Program for the Use of Large Computers for Crystallographic Problems,” which appeared in the British Journal for Applied Physics. Here, Peter was finally in his element, working at the forefront of a field that was swiftly changing, engineering devices by hand, and building complicated electronics systems such as a “one dimensional diffractometer” for x-ray crystallography – or what Peter called an “automatic gadget” – from plug-in logical blocks.

Peter took the first steps toward an important milestone in this new line of research, when he ordered a computer and electronic parts that he thought would be necessary to produce a copy of the state of the art diffractometer and visualization systems then in use at Oak Ridge National Laboratory, the American research center founded in 1942 as part of the Manhattan Project. Funded by a Public Health Service grant, his system-in-progress deployed an ex-military scope equipped with a preamplifier, a Schmitt trigger, a monostable pulse generator (used to trigger the scope), and a Sherwood FM tuner that he had acquired from Linus Jr. The tuner in hand, Peter spent almost a year tracking down its circuit diagrams, so that he could most effectively cannibalize it in support of his cobbled together atomic measurement machine.

Once completed, not only did Peter’s device work, it worked marvelously. By May 1968, his computer and the program that ran it were making thousands of minute measurements per week. Indeed, the apparatus was used to determine the structure of five compounds in a ten-week period; a volume of calculations, as Peter pointed out, that was visually represented by four miles of punched paper tape that the computer had to read in producing the work. This huge success stood in stark contrast to Peter’s years at Cambridge, where he had struggled mightily to adequately determine the structure of a single compound.

With his machine, Peter Pauling was attempting to make University College technologically competitive with an institution that had received major support from the U.S. Atomic Energy Commission during the height of the Cold War. Astoundingly, he accomplished this goal using, to a large degree, spare parts. Later, Peter would use the measurements from his device to improve the Caltech method for drafting pseudo-perspective drawings of molecular structures, producing instead Third Angle Projection-style drawings of atoms and their bonds. As his successes mounted, he was promised a lab that would be four times larger, and was elected President of the Chemical and Physical Society of University College, London.


Behind the scenes, however, Peter was struggling to balance his career with his family life, and was plagued by personal demons. Ever since leaving Cambridge a decade earlier, his mother had been worried about his mental health, urging him to see a psychiatrist about his struggle with manic-depression. Over time, this view came to be shared by a growing number of friends and family. But burdened as he was by the competing forces of a new wife and children, the completion of his degree, and the press of research and professional obligations, there never seemed to be a good time.

At one point, Linus Pauling became so concerned for the welfare of his grandson, Thomas, that he offered to arrange for the boy to live in Pasadena for as long as might be necessary for Peter’s domestic situation to stabilize. Peter responded that he was far too busy writing his thesis and preparing lecture courses at University College to fly Thomas to New York. A few months later, he revealed that Julia was pregnant with their second child.

As time passed, the growing strain on Peter and Julia’s marriage became palpable to those who knew and loved them both, and by 1961 Peter had suffered a serious breakdown, confiding to his parents that he was finally and earnestly trying to see a psychiatrist, as his bouts with sadness had become “uncontrollable.” Peter’s lament seemed, at times, to mirror the dark geopolitical climate of the 1960s. After John F. Kennedy’s assassination, Peter wrote to his mother that he was “stricken” by the President’s death. The optimism of the Kennedy years had led him to think that “ordinary mortals” might “rest a little easier” under the vibrant president’s leadership. “Now,” Peter admitted, “I fear it is back to the struggle.”


But as the decade moved forward, Peter Pauling found that he had other struggles of his own to worry about. By 1967, he and his wife had agreed to a divorce. Peter subsequently moved into a flat in dodgy area of London – St. John’s – where he shared his new space with a painter. The flat was later robbed, and Peter lost most of his clothes and jewelry, as well as his radio, as loss that he lamented. (“I used it all the time,” he wrote, “to fill up the empty holes in my head when I am alone.”) Likewise stolen was a pot that his sister Linda had given him for Christmas. He wrote to her that he missed this item the most, as it meant more to him than anything else that was taken.

Linus Jr. came to London to visit his brother during this time, and ultimately left the scene both worried and relieved. The worry came from the fact that Peter, by his own admission, was drinking and smoking far too much. On the other hand, Linus Jr. felt a measure of relief that his brother had finally done what he thought was right for his children: leaving the family home at Lansdowne Road to Julia, Thomas, and Sarah.

Peter Pauling: Cambridge Struggles, 1954-1956

1956i.8

Julia and Peter Pauling, 1956.

[The life of Peter Pauling, Part 6 of 9]

The year 1954 was a tumultuous one for Peter Pauling. For one, Jim Watson had left for Caltech, and Peter lamented that his absence was felt, as he was “a positive force, albeit a bit conceited” when it came to social dynamics in the lab. At the same time, Peter’s sister Linda was preparing to move to Cambridge, where her father hoped that Peter might help her to find lab work assisting with crystal structure determinations. (Linda was quite interested in mathematics.) His sister’s imminent arrival excited in Peter visions of European exploration, and especially of skiing.

But while Peter dreamed, serious matters were afoot at the Cavendish Laboratory. Its director, Sir Lawrence Bragg, was planning to resign his Cambridge professorship to take a position as head of the Royal Institution in London. Meanwhile, the lab’s incoming director of physics, Nevill Mott, was widely known to be of the opinion that the unit’s increasing focus on biology needed to be redirected. John Kendrew was worried that the MRC unit that he and Max Perutz headed might be kicked out of the lab, or even the department, entirely.

This uncertainty both distracted Kendrew from Peter’s lack of progress on his myoglobin work, and, in retrospect, made Peter’s lack of enthusiasm for his topic all the more glaring. Indeed, while John Kendrew was worried about the future of their research, Peter was writing to his father that he was unconcerned about Mott’s approval. Rather, as was so often the case, Peter’s main preoccupation was his vehicle, this time a 1930 Mercedes Benz open touring car, described as “18 feet long and mostly engine,” that Peter was now cruising in for special occasions like the May Ball at Peterhouse. Peter’s older brother, Linus Jr., had forwarded him money to purchase the car, hoping that it would be affordable to rebuild the engine. When the cost of doing so turned out to double his investment in the vehicle, Linus Jr. thought it more expedient to simply let his younger brother have the car.

Linus Jr. and Peter formed a strong relationship during Peter’s years at Cambridge, a time period where Linus Jr. and his wife Anita made a habit of travelling around Europe during the summers. This closeness marked something of a renewal of the brothers’ relationship since they had seen little of one another during their more formative years, and as children had little in common. Now, cars in particular emerged as an area in which the two could share their exuberance. Linus Jr. reflected later that, on those trips abroad, he and his wife enjoyed Peter tagging along – his vitality, beaming smile, and friendly nature made him the life of any party.

But this was clearly only one side of Peter Pauling. Privately, he admitted to his mother that he often felt unsure of his path in life, and that he felt unable to meet the challenges of his PhD program. He often wondered whether or not he would be better off simply teaching chemistry, or helping to write his father’s textbooks. These bouts with gloom were contrasted by sudden and excited turns to sociability. Linus Jr. would later point out that their paternal grandmother – Linus Pauling’s mother, Belle – was possibly manic depressive, and was reported to have died in a mental hospital. This, he believed, was likely where Peter had inherited his own emotional instability, and it was during his stint in Cambridge that manic depressive symptoms started to manifest most clearly.


 

1954i.15

The Paulings in Stockholm, December 1954. Credit: Svenskt Pressfoto.

Linus Pauling’s frustration with Peter’s hoax “Francis Crick letter” had faded by the time that the entire family met in Stockholm for the 1954 Nobel Prize ceremonies. It was there that Pauling was to receive his highest honor to date, the Nobel Prize for Chemistry, commemorating his work on the nature of the chemical bond. After a frustrating battle to receive government permission to leave the country – by then, Linus’ political activities were causing him problems with the Passport Office – the Pauling family flew to Copenhagen where they met Peter and Linda. By then, Linda had taken up residence in the basement room that her brother had just left at the “Golden Helix,” as the Crick home on Portugal Place was now known. Once arrived, she worked for a time as Francis and Odile Crick’s au pair.

Watson returned to the Cavendish in 1955 to find the MRC unit on the verge of being squeezed out by Nevill Mott. Finally registering this threat, Peter began to panic, writing to implore his father that he vocalize his positive impressions of the unit’s work and that he recommend that the group be allowed to continue their research there. At the same time, Peter applied for a post-doctoral fellowship grant from the National Science Foundation, hoping to solidify the standing of both himself and the group by bringing additional research money into the lab.

As it turned out, Peter’s maneuver worked: he received the grant, and this was no doubt a boon to his position at a crucial time. It did little to help him in his research, however. He continued to struggle with myoglobin and, increasingly, he placed his fading hopes squarely upon the idea that mercuric tetraiodide ion crystals might be a better candidate for the sorts of analysis that Kendrew and Perutz were beginning to doubt he could complete.


As the final year of Peter’s program dawned in fall 1955, the frequency of his drives about the grounds to impress the girls dropped to what Jim Watson considered a startlingly low level. Perhaps realizing the “do or die” position that he was in with respect to his research, Peter seemed to be redoubling his focus on finishing his degree.

During this same period, Peter had begun seeing a young woman by the name of Julia, who was a student at a nearby all-women’s school. Jim Watson, curious about the situation, queried several girls that he knew from the school, but most were silent, and Julia herself became conspicuously absent as the New Year drew closer.

Meanwhile, Peter’s father had been working to prepare his son for life after Cambridge, offering him an appointment in the Caltech Division of Chemistry and Chemical Engineering as a Research Fellow focusing on the crystalline structure of globular proteins, to be determined through the use of x-ray diffraction. Pauling wrote to his son

We have a real need here for someone who has had the sort of experience in taking x-ray photographs of crystals that you have obtained. I think our effort to determine the complete structure of a crystalline globular protein is going to be successful, and that you might like to be associated with the successful effort.

Peter did not respond immediately, taking about a week to think about the proposal. It may well be that he was simply overwhelmed by both the work to be done and the festivities to be had during his final months at Cambridge. Plus, it seemed that the job his father had offered likely would be waiting for him as soon as he had finished his program in England.


Few had seen much of Peter in the run-up to Jim Watson and Linda Pauling’s practical joke of a dinner party. In response to a rumor that Watson and Linda were seeing one another, the two decided in good fun to host a get-together, thus driving speculation into a frenzy by implying an impending announcement that, in fact, was never to come. Peter was invited and did show up, but much to the surprise of the hosts, he was not his usual grinning, charming self. Instead, he seemed sentimental and full of a solemn interest in the future of his friends at Cambridge. Watson and Linda later realized that, on this particular evening, Peter was wrestling with a weighty issue: he was soon to become a father.


1956i.10

The Pauling family on Christmas Day, 1956. Peter and Julia sit at right.

A letter sent by Peter’s parents in early 1956 concluded with an expression of excitement: Linus and Ava Helen would be visiting soon and would look on with pride as they witnessed their son receiving his Cambridge Ph.D. In his response, Peter explained that this day, sadly, would never come. Though he felt that she was a “clever, delicate, and lovely girl,” Peter had not made Julia an “honest woman,” and for this he would be sent down from Cambridge and not be allowed to take a degree. Accordingly, this also meant that he would not qualify for the position that his father had offered him at Caltech.

When he learned of his situation, John Kendrew suggested that Peter might be able to transfer both the remainder of his fellowship with the National Science Foundation, and also the completion of his doctoral research, to the Royal Institution in London, where Sir Lawrence Bragg – his old program director at the Cavendish – was now director of the Davy-Faraday research lab. By then, however, Peter had decided to marry the mother of his child, and arrangements were quickly made by Linda Pauling for a quiet civil wedding that was out of the spotlight and not attended by Linus or Ava Helen.

Peter and Julia were married on March 13, 1956 at the Cambridge Register Office on Castle Hill. Peter’s bride was given away by her father, and with no family members other than Linda present, Peter’s sister acted as the sole adjudicator of the Pauling family’s approval of the union. Peter’s Cambridge advisor, John Kendrew, stood with him as his best man. Following the wedding, a reception was held at Kendrew’s home at Tennis Court Road, after which Peter put on his trademark grin and, with Julia, vanished in a new Porsche. Before the year was out, Linda Pauling, struggling financially and burdened by an expired work visa, returned to Pasadena.

Between 1957 and 1959, Kendrew and Perutz successfully modelled the molecular structure of myoglobin that Peter had been working on. In this, the Cavendish once more beat Caltech to the punch, as the position that Linus had offered to Peter was meant to contribute to a similar problem. Myoglobin was the first ever protein to have its atomic structure determined, and Kendrew and Perutz shared the Nobel Prize in chemistry for this achievement in 1962.

Peter Pauling at Cambridge, 1953-1954

1954i.036-peter

Peter Pauling, 1954.

[The life of Peter Pauling, part 5 of 9]

In the first months of 1953, with his office mates scrambling to determine the molecular structure of DNA before his own father could beat them to it, Peter Pauling was mostly concerned with the English weather. He had been at Cambridge University since the fall of 1952 when he began his PhD program in physics at the university’s Cavendish Laboratory, and in that time he judged that he had seen a mere two full days of sun and was now officially fed up.

His father, by contrast, was mostly concerned with finishing his most recent edition of The Nature of the Chemical Bond, for which he had often solicited Peter as a source to provide example problems and solutions prior to his departure for England. As he was now beginning his graduate research, however, Peter was too busy to provide much assistance for this edition.

Instead, he was mostly occupying himself with a muscle camera developed by Hugh E. Huxley, a molecular biologist studying the physiology of muscle with Max Perutz’ Medical Research Council (MRC) Unit of Molecular Biology at Cambridge. Taking pictures of fibrous and globular proteins – beginning with insulin and tropomyosin – Peter applied the Cochran-Crick theory, with the goal of determining the helical structure of these protein molecules. This inquiry was, in principle, made possible by Linus Pauling’s work from less than a decade prior.

Since 1947, when the MRC unit was founded by Sir Lawrence Bragg, John Kendrew and Max Perutz had endeavored to use x-ray crystallography to determine the molecular structure of hemoglobin in sheep. By the time that Peter arrived at Cambridge, however, hemoglobin had proven to be an untenable object of study, and Kendrew’s focus had shifted to myoglobin. Whereas hemoglobin is found mostly in the blood, myoglobin is generally found only in muscle tissue. Both are proteins that carry oxygen to cells. Problematically, myoglobin is one fourth the size of hemoglobin, and too small for the era’s techniques of x-ray analysis.

To solve this issue, sperm whale myoglobin was used in hopes that the molecular details of the larger, oxygen-rich proteins of a diving mammal would be more observable with the tools then available. “Stranded whales are the property of the Queen,” Peter explained to his father as he discussed this work, “but we have an agreement with her to get a piece of meat if one comes ashore.” Nonetheless, though availed of samples from beached whales in the United Kingdom and from countries as far afield as Peru, Kendrew could not render the x-ray diffraction patterns with complete certainty.


 

myoglobin

Sperm whale myoglobin image created by John Kendrew.

In 1953, Perutz realized that by comparing the diffraction patterns of natural whale myoglobin crystals to crystals soaked in heavy metal solutions – a procedure called multiple isomorphous replacement – the positions of the atoms in myoglobin could be more accurately determined. Accordingly, Peter was tasked with making countless measurements in support of this effort.

Peter wrote to his father often over the next two years as he struggled to complete this project, which was the focus of his PhD. In particular, Peter asked for advice on how one might best get heavy metal atoms onto myoglobin, detailing his attempts to use everything from saltwater to telluric acid, which was used to produce salts rich in metallic contents, such as the element Tellurium.

Indeed, Peter’s work proceeded slowly, not least of all because of his knack for keeping things entertaining. Shortly after Watson and Crick’s discovery of DNA, for example, he fabricated a letter of invitation from his father, Linus Pauling, to Francis Crick, requesting Crick’s presence at an upcoming conference on proteins at Caltech. “Professor Corey and I want you to speak as much as possible during the meeting,” the impostor Pauling said to Crick in the fake letter, even urging him to consider lecturing at Caltech as a visiting professor. Linus Pauling had appeared to sign the letter himself, his signature skillfully forged. The letter proved so convincing that Crick actually replied, accepting the invitation to speak at the conference.

Before long, it became apparent that the entire communication was, in fact, a practical joke. Lawrence Bragg, the director of the Cavendish Laboratory, where Crick himself worked, was scheduled to speak at the proteins conference in the same time slot that the fake letter had proposed for Crick. Were it not for this, the deception might have gone even farther, since upon seeing his son’s forgery Linus himself was almost convinced that he had written the letter and had simply forgotten about it amidst the relentless pace of his schedule.

Ever a stickler for the details, however, Pauling noticed a grammatical error in the document that he would never have made. From there, he deduced the letter as having been authored by his mischievous son. For this transgression, Linus subtracted a five-pound fine from the $125.00 check that he sent to Peter each month.

Peter Pauling and the Discovery of the Double Helix, 1952-1953

1954i.57-peter-600w

Peter Pauling, 1954.

[The life of Peter Pauling: Part 4 of 9]

With Winter break coming fast and Linus Pauling having apparently solved the structure of DNA, Jim Watson and Francis Crick extinguished any hope of modeling their own structure. Eager to take advantage of a few days off, their Cavendish office mate, Peter Pauling, headed for the continent in the company of a friend whom he described as “a mad Rhodes scholar” who had “wooed” him with his “insane plan” for exploring Europe.

On this trip, which was indeed ambitious, Peter visited Munich, Vienna, Linz, Brussels, Frankfurt, and Bavaria, hitchhiking his way from location to location. Crossing Germany, Peter saw neighborhoods still littered with the rubble of the Second World War, alongside industrious people struggling to rebuild. His mode of travel, he confessed to his mother in a letter, had seemed a better idea when its low cost was his only consideration. In person, however, spending several hours standing in or walking through the snow had a way of changing one’s priorities.

Nonetheless, the whole escapade proved a romantic adventure for the young Peter Pauling. He spent Christmas Eve in a gas house belonging to the director of an iron company somewhere in Leoben, Austria. Resting there and watching the snow fall, he wrote again to his mother:

I look out the window to the lovely white mountains. It is grand. Considering the possibilities, Christmas and your birthday [Ava Helen was born on December 24, 1903] could hardly have been spent in a nicer place. Considering impossibilities, I can think of places where I would much prefer to be. Sometimes it is sad to grow up.


 

[Triple Helix animation and narration created by Cold Springs Harbor Laboratory]

With the arrival of the new year, the Cavendish researchers put their skis away, shook the snow from their coats, and resumed their work.  It wasn’t long into the term before Peter learned, from two letters received in February, that his father was, in fact, having difficulty with some of the van der Waals distances hypothesized to be near the center of his DNA model. In response – and almost as an afterthought – Peter casually asked his father for a manuscript of the DNA proposal, mentioning that his coworkers in Max Perutz’ unit would like to give it a read. Upon receiving the paper, Peter promptly revealed to Watson and Crick that the Pauling-Corey model was a triple helix, a concept similar to one that Watson and Crick had developed themselves – and rejected – back in 1951.

This moment was a major turning point for Watson and Crick, who only then realized that they still had a chance to discover the structure before Linus Pauling. That said, what followed may not have been quite the race as it was made out to be after the fact. At least, Peter Pauling did not see it that way, and the casual manner in which his father interacted with him (and with others at the Cavendish) seems also to belie such a dramatization.


 

[Jim Watson recalls learning of the Pauling-Corey triple helical model. Video created by Cold Springs Harbor Laboratory.]

Near the end of February 1953, while wishing his father a happy birthday, Peter noted that his office still felt that Linus’ structure required sodium to be located somewhere near the oxygens, whose negative charges would have to cancel out to hold the molecule together. “We agree that everything is a little tight,” he said, referring to the small atomic distances between Pauling’s three polynucleotide chains with phosphate groups in the middle.

As communicated in an earlier letter to his son, Linus Pauling had already identified these structural arrangements as a weakness of the model, and he was in the midst of attempting to correct the issue. Peter confided to his father that, at that time, the Cambridge office had nothing better to offer. He added simply that “We were all excited about the nucleic acid structure,” and concluded with his many thanks for the paper.

In response, Linus Pauling asked for updates on any progress that Watson and Crick were making with their own model, and casually requested that Peter also remind Watson that he should arrive for a scheduled protein conference at Caltech by September 20th. Peter clarified only that the Cavendish group had successfully built the Pauling-Corey model and that Watson and Crick had then discarded it, becoming very involved in their own efforts and “losing objectivity.” It would be up to them, Peter said, to communicate the details of their structure. Shortly thereafter, Watson and Crick sent a letter to Linus Pauling, outlining their structure and including the short article that they had submitted for publication in Nature.


sci9.001.5-600w

Crystallographic photo of Sodium Thymonucleate, Type B. “Photo 51.” Taken by Rosalind Franklin, May 1952.

It has been well-established that Pauling and Corey made basic errors in their own modeling  of the structure of DNA. But in March 1953, having no knowledge of the x-ray crystallographic photographs of DNA that had been taken by Rosalind Franklin at Kings College, Pauling felt bewildered by the certainty with which Watson and Crick had rejected his triple helical model. Upon learning its details, Pauling agreed that the double helix model was at least as likely, and he considered it to be a beautiful molecular structure, but he could not understand why his own structure was being ruled out entirely.

At the heart of his confusion lay the fact that he did not believe that any x-ray evidence existed that proved that the phosphate groups might somehow be located on the outside, rather than in the core, of the DNA molecule. Pauling did not believe that this evidence existed because he hadn’t seen it yet; crucially, Watson and Crick had. Indeed, from the point of their realization that Pauling had modeled the structure incorrectly, Watson and Crick worked fervently to once again convince Maurice Wilkins to provide them with Rosalind Franklin’s data.

(On one occasion, they met with Wilkins for lunch at the Crick home, where Peter could often be found for brunch on the weekends. On certain of these earlier brunch occasions, while in the home’s basement dining room, Watson and Crick discussed the feasibility of redoubling their efforts to model DNA while Peter, casually eating biscuits and sipping tea at the table, offered that if they didn’t do it soon, his father would take another shot at it. After the embarrassment of a failed attempt, he assured them, Linus Pauling was a strong bet to get it right the second time around.)

Within a month’s time, and with Rosalind Franklin having left his lab, Wilkins finally consented to providing Watson and Crick with all of the relevant data that he had requested. This proved to be the final piece that the duo needed in building their correct structural model of DNA.


1953i.6

Pauling en route to Europe, 1953.

While all of this went on, Linus himself was seemingly unconcerned by any “race” for the structure of DNA. In fact, the only racing on his mind was a jaunt across Western Europe in a new sports car.

While Watson and Crick frantically worked to unravel the secrets of DNA before Linus Pauling beat them to it, Linus Pauling himself was debating the virtues of British, German, and Italian motor vehicles. Preparing for multiple trips overseas and in the market for some new wheels, Pauling’s plan was to select a car while in Europe during the Spring for the Solvay Conference, and then to actually pick it up in August, when he and Ava Helen would return to Europe for the International Congress of Pure and Applied Chemistry in Stockholm and Uppsala. The couple would then tour the continent in style before returning to the United States on a Scandinavian freighter and driving across the country from either New York or New Orleans to their California home.

While Peter advised his father that a Jaguar Mark VII was absolutely the best buy of the season, Linus expressed a preference for the slightly more modest convertible Sunbeam-Talbot. Peter countered with the possibility of an Austin A-40 Sports 4-Seater, and Linus finally agreed to have Peter look into purchasing the car on his behalf and scheduling a delivery of sorts. Seeing that his father was finally taking the bait, Peter attempted to spring a trap: “Might you be in need of a chauffeur, mechanic, linguist, travelling companion, navigator, break repairer, tire changer, witty conversationalist etc. on your trip next summer?” he wondered. “I know just the fellow. Good friend of mine.”


 

dnamodel-piece-600w

A segment of the original Watson and Crick DNA model. 1953.

As the end of March rolled around and the Solvay Conference approached, Linus Pauling alerted his son to the fact that he had not made hotel reservations or, really, any plans for his visit to Cambridge. This responsibility he delegated wholly to Peter, who was somewhat distracted at the time, writing to his father about the blue sky and sun that had finally begun to break up the English winter gloom, and announcing with pride that he had gone to two balls in one week, getting along quite well with the Scandinavian girls. “As a sensible young American, I stand out in this town of pansy Englishmen,” he declared with impunity.

When Linus finally arrived at Cambridge in April, however, he found his son’s sensibilities to be somewhat lacking. Peter had in fact not made the requested hotel reservations, and while campus accommodations were fine for the son, they were not so wonderful for the elder Pauling. Watson later joked that, “the presence of foreign girls at breakfast did not compensate for the lack of hot water in his room.”

When the moment of truth finally came, Peter and his father strode into the Cavendish offices to see the model that Watson and Crick had constructed. Upon inspection, Linus reiterated the interpretation that he had given to his son earlier: the structure was certainly possible, but to be certain, Pauling would first need to see the quantitative measurements that Wilkins had provided. By way of response, Watson and Crick produced “Photo 51,” Rosalind Franklin’s now-famous image that enabled crucial measurements concerning the structure of the B-form of DNA.

Presented with this evidence, Linus Pauling quickly conceded that Watson and Crick had solved the problem. Later that night, the Paulings, together with Watson, had dinner with the Cricks at their home at Portugal Place to celebrate. To quote Watson, each “drank their share of burgundy.”


 

So was it a race? And if so, what was Peter Pauling’s role? Was he a double agent or an informant? Or merely an unwitting accomplice, ignorant of the full implications of his actions?

In trying to answer these questions, it is important to emphasize that, for Peter, the “race for DNA” had never been a race at all. His father, he believed, was only interested in the nucleic acids as an interesting chemical compound. Linus Pauling clearly didn’t attack the structure with the same tenacity as Watson, in particular, who regarded the genetic material as the holy grail of biology, the secret of life. As Peter would write two decades later in New Scientist 

The only person who could conceivably have been racing was Jim Watson. Maurice Wilkins has never raced anyone anywhere. Francis Crick likes to pitch his brains against difficult problems… For Jim, however…the gene was the only thing in life worth bothering about and the structure of DNA was the only real problem worth solving.

In 1966, Jim Watson, then in the process of writing his book on the discovery of DNA, The Double Helix, sent Peter Pauling an early draft. His concern, he explained, was that he accurately portray Peter’s role in the entire affair; that, and he didn’t want Peter to sue him for defamation.

Peter laughed and told his old office mate that he thought it was a very good book; certainly very exciting. However, he pointed out that Watson should ask Linus Pauling for an agreement not to sue him, too. After all, Peter said, “He has more experience than I do.”

Peter Pauling: The Race that Wasn’t, 1952

195-i.91

Peter Pauling with his parents, ca. 1950s.

[The life story of Peter Pauling. Part 3 of 9]

“This tub moves steadily but slowly along.” So wrote Peter Pauling in a letter to his mother, Ava Helen Pauling, riding somewhere in the Atlantic in the hull of a cargo ship that had been built in 1926. “It took us two and a half days to reach the open sea.”

Having said goodbye to the nightlife of Montreal, and having entrusted his brother Crellin with the needle to his old turntable, Peter took to the sea without much to his name save a bottle of duty free Canadian Rye Whiskey; which, he lamented, did not keep him as warm onboard the cold ship as a good overcoat might have done. (Ava Helen, ever concerned for her son’s well-being, would see to it that he would have money to pick up some warmer clothes once he had arrived in Cambridge, paid for in matured war bonds.) Onboard the ship, Peter shared his cramped cabin space with three roommates: a Scot, a “very pleasant and hard-working” Englishman, and an 18 year old “pipsqueak” just out of rugby. Ever the charismatic socialite, Peter must have been excited to spend his days at sea with such an assortment of characters.

Arriving in England in the fall of 1952, Peter began his studies at Cambridge University, working under John Kendrew, a Peterhouse Fellow in Max Perutz’ Molecular Biology Unit at the Cavendish laboratory for physics. Although the Cavendish traditionally had not extended its focus beyond physics and physical chemistry to questions of biology, Sir Lawrence Bragg – director of the Cavendish and chair of the university’s Physics department – had recently supported an expansion of the lab’s scope to include the mapping of biological molecular structures.

This new Molecular Biology Unit would spearhead several important discoveries, among them Kendrew’s and Perutz’ work on the atomic structure of proteins, the program of research that Peter was brought on to support and an accomplishment significant enough to garner the 1962 Nobel Prize in Chemistry. That same year, two other former Cavendish researchers – James Watson and Francis Crick – would receive their shared Nobel Prize in Physiology or Medicine for their discovery of the double helical structure of DNA, a breakthrough that Peter Pauling certainly observed from a front row seat, and even, perhaps, helped to make possible.


portrait-wcwalking-600w

Francis Crick and James Watson, walking along the the Backs, Cambridge, England. 1953. (Image Credit: The James D. Watson Collection, Cold Springs Harbor Laboratory Archives.)

When Peter Pauling first moved into the office that he shared with James Watson, Francis Crick, and Jerry Donahue, Watson noted that Peter was “more interested in the structure of Nina, Perutz’s Danish au pair girl, than in the structure of myoglobin.” Crick, too, felt that the young Pauling was “slightly wild,” but still the office mates hit it off immediately. According to Watson, Peter’s presence meant that, “whenever more science was pointless, the conversation could dwell on the comparative virtues of girls from England, the Continent, and California.” Watson and the young Pauling even made a point of visiting The Rex art house cinema together to watch the 1933 romantic film Ecstasy, which Watson referred to affectionately as, “Hedy Lemarr’s romps in the nude.”

Women aside, Peter was most concerned by the day-to-day troubles that were typical of English life in the early 1950s. He wrote to his mother about the lack of a bathtub in the small, cold, damp room that he now inhabited, and complained about the space’s perpetual lack of sunlight. He did praise his fortune at having scoured London and finding a suitable teapot, and he requested that Ava Helen kindly make him a pair of curtains for his window (which she happily obliged).

In letters to his father, Peter preferred to talk about cars, or his recent dinners with the Braggs and their daughter Margaret, rather than his own research pursuits. Linus, on the other hand, was immediately curious about the intellectual climate at the Cavendish and was especially interested in the work of Francis Crick, who a year earlier had been part of a collaborative effort to develop a theory of mathematical representation for x-ray diffraction that was fast becoming a standard in the field.


portrait-paulingcorey-600w

Linus Pauling and Robert Corey examining models of protein structure molecules. approx. 1951. (Image credit: The Archives, California Institute of Technology)

The previous year, 1951, Linus Pauling had bested Bragg and the physical chemists at Cambridge in becoming the first to publish the alpha helical structure of many proteins. Despite the desire prevailing at the Cavendish to eventually beat Linus Pauling at his own game, Watson and Crick had been warned to keep away from the study of DNA by the head of the lab. Bragg knew that Maurice Wilkins and Rosalind Franklin, of King’s College London, were already working on the problem using Franklin’s photos and crystallographic calculations of the A and B forms (low and high hydration levels, respectively) of DNA.

Wilkins’ and Franklin’s work was proceeding slowly, however, and Peter Pauling and Jerry Donahue – another Caltech graduate now stationed overseas as a post-doc – were both in regular communication with Linus Pauling. These contacts provided Watson and Crick with insight into what was going on in Pasadena. In his correspondence, Peter joked about the mounting competition between Caltech and the researchers at the Cavendish and King’s College. “I was told a story today,” he said to his father. “You know how children are threatened ‘You had better be good or the bad ogre will come get you?’ Well, for more than a year, Francis and others have been saying to the nucleic acid people at King’s, ‘You had better work hard or Pauling will get interested in nucleic acids.'”

While Watson and Crick urged Wilkins to provide them with Franklin’s images and calculations so that they might model the structure themselves, Peter stoked the fires of their urgency, assuring them that his father was no doubt only moments away from solving the problem. Donahue was equally convinced: for him, Linus Pauling was the only scientist likely to produce the right structure.

By December, the fate that Jerry Donahue and Peter Pauling had been predicting seemed to come true: a letter from Linus to his son claimed that he had indeed determined the structure of DNA. The letter gave no details, simply confirming for Watson and Crick that Pauling and his Caltech partner Robert Corey had somehow solved the problem. Watson later recounted his colleague’s distress in hearing this news, recalling that Crick “began pacing up and down the room thinking aloud, hoping that in a great intellectual fervor he could reconstruct what Linus might have done.” But it seemed to be too late. Pauling’s DNA paper was set to appear in the February 1953 issue of Proceedings of the National Academy of Sciences. In all likelihood, it would be time to move on to new projects.

Peter Pauling: Leaving Home, 1945-1952

1946i.13

The Pauling family in 1946. From left: Peter, Ava Helen, Linus, Crellin, Linda and Linus Jr.

[The life story of Peter Pauling, part 2 of 9]

In April 1945, while German forces were surrendering to the Allies in Europe, Peter Pauling was completing his education at Flintridge Prep and moving on to McKinley Junior High, where he would enter the 10th grade. He continued to do well in most subjects, with the exception of a few poor marks in Latin. Now fourteen years of age, Peter went outside of the Pauling family home in Pasadena one day to discover a message painted on their garage door; it read: “AMERICANS DIE BUT WE LOVE JAPS. JAPS WORK HERE, PAULING.” Peter quickly called for his parents, who surmised that the hate message had been written by misguided individuals angered by Ava Helen’s work with the American Civil Liberties Union to prevent the internment of many Japanese-American citizens during the war.

Within the year, Linus Jr., now twenty-one years old, had returned home from his time in the Army Air Corps. He promptly came into possession of a 1932 Ford V8 roadster that had belonged to the Mt. Wilson astronomer Ted Dunham, Jr. The car would become something of an heirloom of burgeoning adulthood for the Pauling boys, passing to Peter when Linus Jr. went off to medical school, and then again to Crellin when Peter finished college in California and went off to Cambridge.

1947i.14

Peter Pauling sitting in the frame of a converted 1932 Model-B Ford, 1947.

In 1947, Linus and Ava Helen returned from a scientific congress in Scandinavia to find their three youngest children growing somewhat depressed by, and resentful of, their frequent long absences. Knowing that they were about to spend six months in England, where Linus would lecture as a visiting professor at Oxford, the Paulings decided it best to take the entire family abroad with them. They traveled by train to New York City in December, where they then boarded The Queen Mary and crossed the Atlantic.

The voyage would prove to be an extraordinary missed opportunity for Linus. Onboard was Erwin Chagraff, who was excited to talk with Pauling about his discovery that DNA nucleotide base pairs obeyed a set rule – a 1:1 ratio of adenine to thymine and cytosine to guanine. As Crellin Pauling later recounted

Chargaff had a reputation as a, well how do you put it politely, as a difficult personality. And what Daddy said to me was that he found Chargaff so unpleasant to be trapped on the Queen Mary with, that he dismissed his work.

In doing so, Pauling overlooked the importance of a critical piece of knowledge that would help lead Watson and Crick to the discovery of the structure of DNA – a discovery with which both Linus Pauling and his son Peter would be intimately involved.


 

1948i.16

The Paulings at sea, 1948. Peter stands at right.

After the family returned from England,  Peter made the fateful decision to follow in his father’s footsteps, enrolling at Caltech as an undergraduate and assuring his father that his “chief purpose in life” was to be a physicist. Unlike the elder Pauling, however, Peter gravitated almost immediately to those new freedoms that a young man no longer under his parents’ roof might be expected to find suddenly and inescapably important: cars, girls, and parties.

With respect to the former, Peter wrote to his father from Caltech, asking whether or not Linus might be interested in helping to pay for a new engine for the roadster. Peter had already been putting some work into the car since it had passed from Linus Jr.’s hands into his own. Now off at college and free to pursue his own interests, he was eager to get under the hood.

Peter likewise wrote to his mother asking her for advice on different perfumes, listing the names of four different girls, all of whom were apparently familiar to Ava Helen, and asking which scents she thought that each would prefer (he then added a fifth young lady to the list as an afterthought).

While Peter was at Caltech, the Pauling home in Pasadena became something of a social hotspot for young, aspiring scientists, many of them graduate students and postdocs who coveted the opportunity to hobnob with the great Linus Pauling. By right of birth and strength of personality, Peter emerged as both gatekeeper and VIP at such events, and he thrived in this atmosphere. In his biography of Pauling’s life, Force of Nature, author Thomas Hager paints a scene of pilgrims making their way up into the hills on warm afternoons for, “a beer, a dip in the pool, some jokes with Peter, and a chance to flirt with tall, slim, blond, teenaged Linda Pauling.”

194-i.46

Peter Pauling, ca. late 1940s.

Peter, now nineteen and cruising the streets of Pasadena at night in the modified “hand me down” roadster, was the life of many of these parties. His undergraduate years were accordingly marked by the ecstasies, despairs, and calamities – including a long and somewhat severe case of infectious mononucleosis – familiar to many college students. His father, observing from the middle distance, sent him a stern letter during this period, noting that he had opened some mail at the house intended for his son and that it was from the Bank of America, alerting Peter that his account was overdrawn by 50 cents. Pauling then advised his son, in great detail, as to how he should best manage his finances to avoid such a problem in the future.

Though they lived in the same city and worked at the same institution, Peter corresponded often with his father, expressing relatively little concern about his finances and far more with the prospect of being called up for the draft. In June 1950, North Korea, aided by the Soviet Union, invaded South Korea, where United States troops had been stationed since the ousting of Japanese occupation at the close of the Second World War. As hostilities in the Korean peninsula ramped up, Peter grew increasingly fearful of being called upon to serve.

The elder Pauling advised that his son request a deferment as a student of physics, which Peter sought and successfully attained. Part of Peter’s later motivation to spend some of his time as an undergraduate in London likewise emerged from his desire to avoid the draft for as long as possible. Peter felt that his enrollment as a student overseas would at least prolong his recruitment, whereas, if he remained at Caltech, he might he pulled in any day and waste his final undergraduate months in military training.


1949i.6

Peter Pauling with his parents, 1949.

Meanwhile, in the summer of 1951, Peter was involved in a serious car accident. The Pasadena Star News reported that, “While driving his father’s expensive 1949 sedan, Peter J. Pauling, 20, son of Linus Pauling, world-famed Caltech physicist, was injured in a spectacular traffic crash at Fair Oaks Avenue and Washington street.” The police report indicated that the Pauling car had been sideswiped by a Harry L. Nottingham, a 30-year old welder, at 2:11 AM.

The police jailed Nottingham overnight on a drunk driving charge, and Peter was treated at the emergency hospital for mild injuries to his head that had been sustained when his car flipped onto its roof after the impact. The accident happened less than a month before Peter was to leave California to spend his summer at a laboratory in Woods Hole, Massachusetts. His eventual departure back east left his parents quite literally picking up the pieces in his absence, as Peter had requested that they keep what remained of the vehicle to see what he could salvage.

His father later wrote to Peter while he was at Woods Hole, explaining that, even with compensation paid out by insurance and the drunk driver involved, the family would still, after legal fees, “come out a little bit in the hole from your use of the Lincoln that night.” Peter responded through his mother, writing “Please tell Daddy that I am sorry I ruined his car,” and asking that she remind him that, of the cars he could have wrecked that night, at least he chose the one that offered a barrier between his head and the road. The old Ford roadster was, after all, a convertible.


 

1952i.5

Crellin, Linda, and Peter Pauling, 1952.

Peter’s stint at Woods Hole was both formative and crucial to his next steps. While there, he studied ion movement in nerves using sodium and potassium tracers in squid axons.  At the same time, Peter began seriously considering what institution to go to for graduate school, looking at Cambridge, among others. Fortuitously, John Kendrew, of Cambridge’s Cavendish Lab, was serving as a lecturer at Woods Hole and, unbeknownst to Peter, was recruiting for his protein structure research group.

Years later, Peter would recount that when Kendrew told Peter’s Woods Hole boss, David Nachmanson, that he had recruited him, Nachmanson replied, “What? That sex maniac?” Kendrew reportedly replied, “What does that matter?” In typical good humor, Peter offered that Kendrew had replied in this manner because he knew that being a “sex maniac” was an advantage at Cambridge. He later confessed, however, that his reputation was not well earned, admitting that he was likely “the most unsuccessful Don Juan in Woods Hole.”

While in Massachusetts, Peter was, in fact, pretty clearly agonizing over how to resolve his relationship with his college girlfriend, who remained in Pasadena. In his correspondence, Peter sometimes indicates a deep affection for his sweetheart, and at other times reveals significant doubt about any chance of a shared future.

It is entirely possible that the hot and cold nature of Peter’s feelings towards this woman were merely a reflection of a young man’s whimsies. It might also be argued that this was an early sign of a lifelong struggle with manic-depression that would come to plague Peter by the later stages of his graduate career at Cambridge. In any case, Peter’s beau was equally unsure. At times she seemed to favor the appraisal of her father, a high-ranking scientific adviser to the American military who was stationed in Europe. The father believed that marriage would prematurely end his daughter’s own academic ambitions and that, more broadly, Peter was bad news.

However, by the following summer of 1952 – just before Peter left for Cambridge – she had warmed to her boyfriend again. It was a summer of exploration; the two crossed the nation prior to the beginning of graduate school for Peter, travelling together to New York, Washington D.C., Princeton, and Long Island. Their romance seemed to burn brightly, if briefly, as Peter’s life in America drew to a close.

In the last few months before leaving the states, Peter and Crellin visited Hawaii, staying with their older brother Linus Jr, who lived there. Meanwhile, Linus and Ava Helen were engaged in world travels of their own, making lengthy stops in France and England. Peter wondered aloud if he would get the chance to see his parents upon his brief return to Pasadena, or if, instead, he would be gathering his belongings from an empty house, departing with the well wishes of Linda and Crellin, and setting out alone for Montreal, where he would board a ship to cross the Atlantic.

The exact circumstances of Peter’s bon voyage from southern California are unknown, but by September 1952, Peter was on his way to a new life in England.

 

Peter Pauling: The Early Years, 1931-1945

1931i.6

Linus Pauling with his second-born son, Peter. 1931.

[Ed Note: Today we begin an in-depth examination of the life of Peter Pauling, the second child born to Ava Helen and Linus Pauling. This is part 1 of 9.]

Peter Jeffress Pauling was born on February 10, 1931. His middle name was given in honor of Lloyd Jeffress, his father’s childhood friend, fellow undergraduate at Oregon State (then the Oregon Agricultural College), and best man on his wedding day. Peter was the second born of the Pauling children. His older brother, Linus Pauling, Jr., was born in 1925, and Peter was joined swiftly by his younger sister Linda Helen in 1932 and, finally, by the baby of the bunch, Edward Crellin Pauling, in 1937.

In the early 1930s, everything seemed to be falling into place for the Pauling family. The same year that Peter was born, his father was promoted to full professor at the California Institute of Technology (Caltech) in Pasadena, where Linus had been since 1922, completing his doctorate the same year that Linus Jr. was born.

The growing family moved into a new home on Arden Road shortly before Peter’s birth, a transition that provided more space for the children and for their dog, Tyl Eulenspiegel, a cocker spaniel named after a German comic character. The year 1931 also marked Linus’ first published article on the nature of the chemical bond – work that would ultimately result in a Nobel Prize.

In the decade following Peter’s birth, his father was incredibly busy, giving fourteen guest lectures at Berkeley alone before Peter turned three. He also publishing his revolutionary structural chemistry research in a groundbreaking book, 1939’s The Nature of the Chemical Bond, a text authored while Pauling was in the midst of a series of nineteen non-resident lectures at Cornell.

1931i.7

Ava Helen Pauling with her infant son, Peter. 1931.

By the time of the book’s publication, Linus Pauling was becoming a meteoric scientific figure, and as he began to travel more frequently, his wife Ava Helen would increasingly accompany him. During this period, the three youngest children – especially Linda and Crellin – were often in left in the care of a woman named Arletta Townsend, who became something of a second mother to them in their youth. The oldest child, Linus Jr., also shared in the care of his younger siblings from time to time, frequently trundling little Peter around the front yard in a child’s red wagon (perhaps an early indicator the boys’ shared love of automobiles that would bring them together later in life).

The older children also cared for the family rabbits, which their father raised at home for future use in his research. What was, for the children, a chore was also a reflection of Linus Pauling’s growing fascination with serology, hemoglobin, and the formation of antibodies and their interaction with antigens. As his investigations moved forward in the late 1930s and early 1940s, Pauling found it either impractical or inconvenient to arrange for his study animals to be housed and tended at Caltech. He opted instead to build roughly fifty rabbit hutches on his own property. While the elder Pauling inoculated the rabbits and carefully recorded physiological data, his boys were charged with feeding, watering, and keeping the hutches clean.

At this time, Peter seemed to have little in common with his older brother, outside of their shared chores around the house. Looking back, Linus Jr. would remember that most of their interaction was restricted to fighting over the bathroom. An argument over this space once became so heated, that it resulted in Linus Jr. splintering a door frame in the scrum.


 

1937i.6

Peter Pauling with his father, 1937.

The United States’ entry into the Second World War touched the lives of all the Pauling children in different ways. In 1937, when Peter was six, an Army rifle range appeared on the other side of a canyon near the Pauling’s new home on Fairpoint Street. With this facility came a small group of Army guards, who would stand vigil near the Pauling’s property. Over time, the soldiers emerged as a social outlet for young Peter, who even as a child seemed to have a natural charm that often brought him rewards. For several years, Peter used the sentries as a means for procuring souvenirs and even stray military equipment. Many years later, much of this treasure could still be found in storage at the family ranch near Big Sur, California.

Not only was Peter charming, he was quite intelligent as well. From 1936 to 1941, Peter attended Polytechnic Elementary, a private school in Pasadena. A 1937 report on his performance included the comment that he was, “Not only a superior child in intelligence, but one of the cutest children we ever took into the school.” Two years later, the praise had only grown – one educator wrote that Peter “seems to be his Daddy’s own boy, and that is saying a great deal.”

From early on in her children’s lives, Ava Helen harbored ambitious ideas for the pursuits that they should entertain, and Peter was identified as the child most likely to succeed in a career in science, thus following in his father’s massive footsteps. Later in life, Linus himself would make passing insinuations about their potential as a father and son scientific duo, referencing the notable case of William and Lawrence Bragg, who shared the 1915 Nobel Prize in Physics for their work on x-ray crystallography. Peter would later become well acquainted with Lawrence Bragg and his wife during his stint at Cambridge, a time period during which Peter had begun actively pursuing his own career in physics and chemistry.


 

1941i.10

The Pauling family with their rabbits, 1941. Peter stands at left.

In 1941, after Peter had completed his fifth year at Polytechnic, Linus and Ava Helen concluded that their gifted son had started to lag academically. To provide for a more effective learning environment, the Paulings had Peter – now ten years old – enrolled at Flintridge Preparatory School in Pasadena. Flintridge was a school for boys where Peter would live in a dormitory, his days closely supervised and specifically structured according to a daily schedule that ran from 7 am to ‘lights out.’

At Flintridge, pupils were allotted one hour and forty five minutes of leisure time per day, with any other time not spent in class devoted to eating, completing chores, playing supervised sports or performing other physical exercises, or studying (also supervised).The school tailored its curriculum to the expectations of a student’s desired college or university, all with an eye toward insuring that the student would be best prepared to pass entrance exams or to enter a university without taking the exams at all. 

The school’s all encompassing tutelage embraced a three-fold training style that aimed to educate the mind, body, and the spirit, as evidenced by its motto, Vires Corpore Mente Spiritique. To chart the progress of the body, Peter’s performances in a range of physical activities – from running and high jump to shot put – were recorded and graphed over the course of the year. These data were then charted against an average representing the capacity of most boys his age, a practice referred to as a Physical Quotient plan. According to an informational pamphlet published by the school in 1941, Flintridge was the only school for young men in existence at the time that adhered to such a plan. The outcome, it promised, would be young men driven to develop their posture and muscle skills.

Once Peter was enrolled, his parents were issued monthly reports on their son’s progress, and to their pleasure, Peter’s schoolwork showed measurable improvement. Unfortunately, the decision to move Peter to Flintridge caused Polytechnic to withdraw its provision of scholarships for the remaining Pauling children. These scholarships had been provided with the contingency that the three eldest Pauling children attend the school, but with Linus Jr. completing his education at Polytechnic and Peter moving on to a different school, it was no longer deemed appropriate to provide a scholarship for Linda alone. As a result, young Linda Pauling was no longer able to attend private school at Polytechnic.


 

1943i.9

Peter Pauling, 1943.

The summer months following Peter’s first year at Flintridge were spent, by Linus and Ava Helen, mostly abroad. As a result, the three youngest children were sent off to Camp Arcadia at Big Pines Park, California, while Linus Jr., now 16, was allowed to remain at home. While at camp, Linda became ill and had to be sent home a month early, leaving Peter and Crellin – from their perspective – stranded at the camp and feeling homesick. Linus Jr. wrote to Peter at this time, urging him to appreciate the time away from the mundane concerns of the Pauling home, including the return of parental discipline. “They’ve found all the things I didn’t do and should have done, and all the things I did do and shouldn’t have done,” Linus Jr. wryly confessed to his younger brother.

In 1943, when Peter was 12, Linus and Ava Helen received letters from his teachers at Flintridge explaining that Peter’s ability to excel seemed increasingly beset by an inability to focus on his work. The staff believed that Peter, like many intelligent children, was not being challenged enough academically, and that in his boredom he preferred to spend his time socializing rather than studying.

Perhaps only coincidentally, this was the same year that Peter’s older brother turned eighteen and left home for Berkeley. While Peter was being groomed in hopes that he might emerge as the next genius of the family, his older brother, Linus Jr., deliberately turned away from any such prospect as he entered adulthood, eventually abandoning college aspirations altogether and joining the Army Air Corps during World War II.