Linus Pauling and Dan Campbell in the laboratory, California Institute of Technology. 1943.

In early 1942, Merck & Co. began producing penicillin with the intention of making it available for soldiers in the field. Up to that point, the company was able to produce only tiny amounts of the drug, making it a precious commodity. They needed a way to mass produce penicillin.

While chemists and biologists worked frantically to devise a better production method, Linus Pauling began to consider a completely different approach to the problem: What if smaller quantities of penicillin were needed to treat a patient?

From his oxypolygelatin experiments, Pauling knew that one of the biggest issues with conventional gelatin-based plasma substitutes was that they typically left the bloodstream at a rapid rate, requiring multiple injections. Pauling and Dan Campbell‘s process for treating gelatin in the oxypolygelatin program had caused molecular chains to form and required more time to cycle out of the blood. In thinking about this new problem, Pauling theorized that, by pairing a penicillin molecule with a protein molecule, the substance would remain in the bloodstream for a longer period of time, greatly increasing its effectiveness.

Pauling first presented his and Campbell’s idea for penicillin in the fall of 1943, generating positive feedback from Office of Scientific Research and Development (OSRD) officials and Committee on Medical Research (CMR) staff. And after conducting more experiments with oxypolygelatin, Pauling had enough evidence to move forward.

In May 1944, he sent a proposal and contract request to the CMR. The proposal was accepted and in September he received 1,000,000 units of penicillin for use in experimentation. By this time, the drug had emerged from novelty status to that of a major medical landmark, adding importance to Pauling’s research. A.N. Richards, the chairman of the CMR, seemed particularly interested in the work, noting in one letter that his request for additional information was “simply a suggestion which emerges from my interest and curiosity.”

Portrait of A. N. Richards, ca. 1940s. National Academy of Sciences image.

Unfortunately, all of the enthusiasm that Richards, Pauling, and Campbell could muster wasn’t enough to make the project succeed. One major deterrent to success was the fact that at the time of the experiments, the molecular structure of penicillin was still classified, forcing Pauling to make guesses as to the way the molecule could combine with gelatin. As a result, what should have been a well-planned series of experiments instead became a game of guess-and-check.

By late December 1944, Pauling was ready to submit his first report and the results were not promising. Pauling and Campbell had treated the penicillin samples with urea, alkaline chemicals, and high temperatures – each a denaturing agent meant to break down the penicillin and reform it with the gelatin. On the contrary, these treatments appeared to cause the penicillin to deactivate. Instead of causing the penicillin to bond with the gelatin, the denaturing agents were destroying it.

Pauling and Campbell provided Richards with a one-page report accompanied by a two-sentence cover letter. The investigation was going nowhere and there were other projects to be looked after. What the researchers didn’t say, however, was that Howard Florey and his team at the University of Oxford had, in the meantime, discovered a method to mass produce penicillin and were in the process of creating a large cache for military use. The need for augmented penicillin was gone.

After the informal update was delivered to Richards, no other mention of the penicillin project appears in the Pauling Papers. It seems that the project was quietly discontinued without so much as the traditional final report to the CMR.


The Business of Detection

Diagram of the Precipitation Apparatus, Smoke Particle-Size Project. approx. 1943.

Our Section L-1 on Aerosols has been set up to handle problems dealing with both offense and defense against toxic smokes. In connection with that program they have naturally run into the old problem of measurement of particle size and particle-size distribution, and have employed two or three of the more promising optical and microscope techniques in this connection… I wonder if you would give some thought to possible new methods of attacking this problem…

James B. Conant, letter to Linus Pauling, June 13, 1941

Following his work with the oxygen meter, Pauling and his right hand man, J. Holmes Sturdivant, were asked to create a carbon monoxide (CO) detection device. This new meter was intended to measure the levels of carbon monoxide in the air.

Carbon monoxide, a colorless, odorless, and tasteless gas, bonds to hemoglobin in the human bloodstream. In the process, carboxyhemoglobin (also known as carbonmonoxyhemoglobin) is created, preventing delivery of oxygen to body tissue, a complication eventually resulting in brain damage and death.

In high temperature environments where there exists an abundance of carbon, the combustion of carbon releases nitrogen and carbon monoxide. Certain tank cabins and airplane cockpits, in which CO could be released by the repeated firing of the vehicle’s weapons systems, were particularly subject to high levels of CO accumulation, sometimes leading to poisoning of the crew. As a result, the U.S. military needed a means of quick-testing air samples for CO saturation.

Pauling and Sturdivant realized early on that traditional chemical indicators like iodine simply weren’t well suited to the apparatus’ requirements. After only a few days of research, they discussed the possibility of using an organic substance as an indicator – hemoglobin seemed a likely candidate. After some calculations and a small amount of experimentation, they were ready to build a prototype.

J. Holmes Sturdivant, 1950.

The CO measurement apparatus contained a sample of hemoglobin molecules bonded with oxygen, otherwise known as oxyhemoglobin. When this sample came into contact with carbon monoxide, carboxyhemoglobin was created. The sample was then measured by a spectrophotometer, providing the user with a reading of the immediate environment’s carbon monoxide saturation in parts per million. Because the conversion of oxyhemoglobin to carboxyhemoglobin was reversible, the apparatus was capable of making consecutive readings without maintenance.

Moving from theory to practice proved a challenge however, as the duo soon found it more difficult than expected to build a working spectrometer that could accurately read carboxyhemoglobin levels. Between October 1942 and November 1943, Pauling and Sturdivant built several spectrometers, attempting to calibrate them in such a way that other environmental changes, including the addition of pure oxygen, would not disrupt the readings.

In December 1943, the pair had taken the project as far as possible. On many levels, the apparatus had proved itself inadequate for use in the field. For one, it was bulky and thus unsuitable for use in confined spaces like tank cabins and cockpits. Worse, it was too fragile to survive transport to the Pacific or European theaters, much less the strain of battlefield conditions. Finally, the device was hopelessly inaccurate unless used under specific, controlled conditions. All of these factors rendered it useless for its intended purpose, and the project was stopped dead in its tracks.

Disappointed, Pauling released his final report and quickly retired the project. In an attempt to find some justification for the hundreds of hours of labor that went into the device, Pauling noted that the apparatus was well-suited for use in the laboratory. Indeed, when deployed in a stable environment, the device was highly accurate and very useful for rapid measurements. As a result, the few meters that were produced before the closure of the project were distributed among researchers at Caltech for their own implementations.

Thanks to his work with the oxygen and carbon monoxide meters, Pauling was considered something of an expert on testing gaseous mixtures. In July 1942, while he was still working with both the oxygen and CO devices, he was asked to develop a field-use apparatus for identifying specific toxins in air samples. The task was complex, but Pauling thought that air contaminants could be identified by their representative particle size. Particle sizes could be determined by electrically charging a group of particles and then drawing them to a condenser plate. According to Stokes’ Law, the rate at which these particles are attracted to the plate is inverse to the radius of the particle. By examining this grouping, Pauling argued that it would be possible to estimate the composition of the smoke being analyzed.

Encouraged by some early calculations, Pauling set a lab assistant, Charles Wagner, to the task of making preliminary measurements. His results were positive and Pauling chose to move the program forward. By 1943 he was overseeing a group of men making calculations, building the apparatus, and creating stable smokes for the testing process, and by early 1944 the team was ready to put the device through its paces.

Diagram of the Filament Charging Device, Smoke Particle-Size Project. approx. 1943.

The initial tests were not good. The condenser plates were causing a bizarre phenomenon in which the largest particles were being grouped with the smallest, resulting in a highly inaccurate reading. And that was just the beginning of the team’s problems. They soon found that unfiltered air, such as that found in standard field conditions, contained a vast range of particles. In addition to the smoke or fog meant to undergo analysis, a typical sample could also contain dust, industrial pollutants, and natural contaminants like pollen. The distribution of precipitated particles was already making analysis difficult with clean samples; adding a host of impurities to the sample so complicated the results that an accurate determination was impossible for professional scientists. It was clear that a soldier in the field would be unable to operate the instrument effectively.

On March 28, 1944, Pauling filed his final report on the Particle Size Measurement Apparatus, number OEMsr-103. The project, he surmised, was a failure. In his final write-up for the Office of Scientific Research and Development, Pauling suggested that the apparatus might be reworked to give a more accurate reading under controlled laboratory conditions. While he frankly admitted that the instrument could “hardly be perfected for field use,” he hoped that his work and that of his fellow researchers had not been conducted in vain.

In hindsight, Pauling’s work with testing gaseous samples was doomed by the available technology. Complex instruments capable of operating in field conditions are difficult to engineer even today. Without access to microchips, solid-state computing equipment, or high-tech manufacturing processes, certain precision instruments were simply unachievable during World War II.

The Oxygen Meter

The Pauling Oxygen Meter. approx. 1940.

Have most promising method determination partial pressure oxygen. Best available post-doctorate assistant offered job elsewhere. May I hold him. Please telegram or telephone.

-Telegram from Linus Pauling to James B. Conant, October 8, 1940

On October 3, 1940, Pauling met with his colleague, W.K. Lewis, in New York City. At this meeting Lewis informed Pauling that the military needed an instrument capable of measuring the pressure of oxygen in a mix of gases. He explained that soldiers operating in low-oxygen environments – primarily airplanes and submarines – were sometimes affected by loss of consciousness and even death due to unchecked oxygen depletion. An oxygen meter would enable pilots and submariners to track oxygen levels within the cabin, allowing them to adjust for dangerous decreases.

The following day, Pauling began mentally sketching out plans for the instrument and before long he had struck on a possible design. On October 8, he sent a telegram to National Defense Research Committee (NDRC) administrator James Conant stating that he had a “most promising” means of determining the partial pressure of oxygen. Soon after, Pauling received an unofficial order from Harris M. Chadwell, Conant’s right hand man, to begin experimenting with the design. After another exchange of letters, Pauling was appointed “official investigator” for the project and given a budget which funded Pauling and his colleague Reuben Wood, a temporary assistant, with materials and equipment for a six-month probationary period.

Torsion balance used in the Pauling oxygen meter. approx. 1945.

The apparatus was based on the principle of a torsion balance, a measuring device originally developed by Charles-Augustin de Coulomb in 1777. Wood created the balance by connecting a tiny metal bar to a quartz fiber. He then attached a hollow glass sphere to each end of the bar and a mirror to the fiber crossbar. The entire device was then strung between the points of a standard horseshoe magnet and shielded by a bell jar. When the spheres were filled with air, the paramagnetic forces present in oxygen atoms would cause the dumbbell setup to rotate, twisting the quartz fiber. The mirror on the fiber, as it twisted, would alter the angle of a reflected light beam, striking a photocell. The photocell readings would then register on a dial, in the process giving an approximate measure of present oxygen levels.

By November 1, less than a month after receiving the assignment, Pauling and Wood had constructed and tested a model. Though fragile and prone to decalibration, it worked.

After presenting his and Wood’s work to government officials, Pauling was told that the meter would need to be usable despite frequent acceleration and deceleration, tilting on all axes, and constant shock and vibration. In response, the duo designed an adjustable support for the apparatus which allowed it to remain stable despite movement and shock. Shielding and damping techniques were developed too, allowing the meter to give accurate readings under moderate strain from outside forces.

There were, of course, setbacks. The quartz fibers were nearly invisible and required special tools to create and place. The glass bubbles used on the instrument had to be hand-blown but were so delicate that it took many tries – sometimes hundreds – to create a single perfect bulb. Supplies, too, were difficult to acquire. Liquids for damping, metals, and magnets all proved hard to find, further slowing the research process.

Though development was cumbersome and sometimes frustrating, it was clear by the summer of 1941 that Pauling’s oxygen meter was a success. The NDRC, pleased with Pauling’s work, renewed his contract, requesting that five additional meters be manufactured and distributed according to committee orders. Despite the production demands placed on his team, Pauling insisted that the design be further improved. Wood suggested a prototype using two magnets rather than one – a new approach which allowed for a sturdier, more accurate model.

Reuben E. Wood. March 1948.

Despite the creation of the Office of Scientific Research and Development, an entirely new war research agency, and major changes in hierarchy and administrative procedure, Pauling’s group worked for seven months manufacturing oxygen meters with little interference from officials. By early 1942, it was clear that his team could not keep up with growing demand for the device.

In response, Pauling turned to Caltech staff member Dr. Arnold O. Beckman, a skilled instrument-maker who, after a meeting with Pauling, accepted a contract with Caltech for the manufacture and distribution of the oxygen meter. To simplify the production process, Beckman built the world’s smallest glass-blowing device for purposes of creating the meter’s bulbs. Through this and a few other innovations, Beckman increased his manufacturing capacity to nearly one-hundred units monthly – at least ten times what Pauling’s team could have hoped to achieve.

For the remainder of the war, Pauling continued to oversee the production and distribution of the oxygen meter and Beckman, with his refined manufacturing process, succeeded in equipping Allied forces with hundreds of the devices. Customized models were also provided to laboratories and government institutions in both the U.S. and abroad, and were instrumental in the development of life-support systems for both pilots and submariners.

The use of Pauling’s oxygen meter did not end with the war. Following the close of hostilities, the meter was repurposed for the incubators used to house and protect premature infants. Hospital staffs were now able to maintain safe oxygen levels, reducing the risk of brain damage and death among newborns. Pauling was proud of his instrument’s peacetime applications and occasionally noted it as one of his more significant accomplishments.

Rocket Propellants

Both the Army and the Navy are developing hypervelocity guns. Of the two, the Army has the greater interest, because of antitank application…. Present work involves taper bore guns, muzzle adapters, light-weight projectiles.

-Linus Pauling, notes taken at a meeting of the Ad Hoc Committee on Internal Ballistics, August 28, 1942.

In the summer of 1940, President Franklin Roosevelt signed into existence the National Defense Research Committee (NDRC), an organization responsible for supplying the U.S. military with scientific solutions to battlefield problems. In September 1940 Pauling joined the NDRC and was assigned to Division B, which was responsible for the creation of bombs and explosives. There, he provided technical knowledge and guidance for researchers developing new explosive materials.

On August 11, 1942, he was asked by Vannevar Bush, the director of the NDRC and its predecessor, the Office of Scientific Research and Development (OSRD), to serve as the chairman of the Ad Hoc Committee on Internal Ballistics as related to Hyper-Velocity Guns. Despite the additional work required by the position, Pauling accepted.

The committee’s goal was to oversee the creation of a high-performance propellant for use in hyper-velocity guns. Conventional powders were recognized among military personnel as being both impractical and ineffective. The composition of traditional propellants led to a number of problems including excessive erosion of barrel interiors, blinding muzzle flash, and low shell velocity. For a tactical advantage the new powder needed to be non-erosive, flash-less, and capable of launching a shell at speeds reaching 3,000 feet per second.

Pauling and his committee organized the project agenda and formed research contracts with private industrial laboratories and technical institutes around the country. From there they began developing experimental methods for studying powder combustion. Once they had established effective testing procedures, they designed a set of experiments to evaluate new, hybrid powders that allowed for lower combustion temperatures and greater force. These trials provided the group with data sufficient to move ahead with a large program of creating and test firing projectiles using a number of different propellants, including cordite-n and nitroguanidine.

Pauling’s role in the project was largely administrative. While he preferred to work in the lab, his position as chairman of the ad hoc group required that he make frequent trips to Washington, D.C., create progress reports, and tend to a host of mundane operational details. However, with his colleagues’ help, Pauling did find some time to work in the lab.

In 1943 he began an investigation of a powder that resisted the destabilization that contemporary powders were prone to experiencing. After experimentation, he discovered that dinitrodiphenylamine, a derivative of an existing stabilizer, was much more effective than any other product used at the time. It was not until 1983 that Pauling learned that this discovery had led to an industry-wide change in explosives manufacturing, potentially saving thousands of lives in the process.

Ultimately Pauling’s research team, in conjunction with the various other personnel associated with the ballistics committee, successfully engineered several new powders which proved to be both more stable and more powerful than their predecessors. In 1945 Pauling received a certificate from the War Department, signed by the Secretary of War, the Chief of Ordnance, and the Commanding General of the Army Service Forces. The award was presented “For outstanding services rendered in time of war to the Rocket Development Program of the Ordnance Department.” Pauling received a similar award, a week later, from the United States Navy Bureau of Ordnance.

The Scientific War Work of Linus C. Pauling

Pauling's NDRC authorization papers permitting work on explosives in warfare. May 1, 1944.

In attempting to gain a grasp on the details of Linus Pauling’s long and complicated life, one might choose to view it in terms of decades. In the 1920s, he was coming into his own as a researcher. In the 1930s, he established himself as a world-class chemist. The 1950s encapsulated his work with biochemistry, DNA, and molecular disease and the 1960s marked the height of his peace work.

In early 2009, we began to examine a set of activities that were integral to Pauling and countless other scientists during the 1940s:  his role as a military researcher for the United States government during World War II.

One of his largest projects, the creation of a blood plasma substitute, became fodder for a blog series that garnered significant interest from our readership. During the creation of the Oxypolygelatin write-ups, it became clear that Pauling’s contribution to the Allied cause during the war was enough to merit a more thorough exploration and a more rigorous project than a series of blog posts.

Between the summers of 2009 and 2010, the Oregon State University Libraries Special Collections staff examined thousands of pages of technical documents, handwritten notes, correspondence, photographs, and diagrams relating to Pauling’s work for the U.S. government from 1940-1945. This ultimately resulted in the creation of The Scientific War Work of Linus C. Pauling, the fifth entry in our Documentary History website series.

The centerpiece of this website is a forty-seven page narrative which explores Pauling’s life and work during World War II. The narrative is accompanied by photographs and illustrations, hundreds of pages of documents and letters, audio files, information on a selection of Pauling’s important colleagues, and a detailed day-by-day account of his activities during the war.

Over the next four weeks, we will explore Pauling’s contributions to the war effort through his work with propellants and explosives, invisible inks, gaseous mixture detection, penicillin, hydrogen peroxide, and the entrenchment of post-war research funding. For more information on this work, the Manhattan Project, and Pauling’s personal life during World War II, please visit The Scientific War Work of Linus C. Pauling.

Big News

We are very excited to announce the release of our latest website, The Scientific War Work of Linus C. Pauling:  A Documentary History.  The fifth in our documentary history series, the project took us nearly thirteen months to complete.

As with the previous four documentary histories, the war site is comprised of a Narrative, a Documents and Media repository (nearly 300 documents and audio clips were used), and a link to Linus Pauling Day-by-Day.  One crucial difference between this project and its predecessors, however, is that our staff researched and wrote the Narrative in-house. (Past Narratives were written either by biographer Tom Hager or historian of science Dr. Melinda Gormley.)  This was largely necessitated by the fact that no author had, to this point, rigorously delved into Pauling’s vast program of scientific war research, as conducted for the United States government during World War II.

The primary thrust of the war site narrative is a detailed review of the many specific projects that Pauling either directly investigated or oversaw as an administrator during the war years.  Our research indicates that these were the main projects with which Pauling was involved:

Amidst the project descriptions, the narrative also features an interlude that recounts the Pauling family’s experience of life during wartime, including Linus Pauling, Jr.’s stint in the United States Army.   The project likewise details the elder Pauling’s early interactions with a host of the era’s pivotal figures, including Vannevar Bush and the National Defense Research Committee, J. Robert Oppenheimer and the Manhattan Project, and W.W. Palmer’s committee, which was charged with charting the course of post-war scientific research funding in the United States.

Group photograph of the National Defense Research Committee membership. approx. 1940.

One of the real pleasures of working on this project has been the discovery of several small details that have added flavor to the overall story of Pauling’s war experience.  Users of the site will learn, for instance, of the following anecdote, as recorded in a 1967 letter written by Arne Haagen-Smit.

During the year 1944 Mrs. Ava Helen Pauling worked for several months in my laboratory at the California Institute of Technology. Her task consisted in the separation by chromatography of various colored derivatives of plant products and the determination of their physical constants. I remember with a great deal of pleasure her participation in our research which she carried out to my full satisfaction. I have no hesitation in recommending her for an appointment which would enable her to return to the laboratory.

In a later interview, Linus Pauling would further reveal that his wife had “worked for a couple of years as a chemist on a war job making rubber out of plants that would grow in the Mojave.”

The website incorporates twenty-five audio clips extracted from interviews conducted by Tom Hager in the early 1990s for use in his standard-bearing biography of Linus Pauling, Force of Nature. Here too we find many amusing anecdotes, including this great bit from Nobel laureate William Lipscomb.

In a similar vein, included among the nearly three-hundred documents used to provide deeper context for the narrative are a series of drawings created by David Shoemaker, who was at that time a Caltech Ph. D. candidate working under Pauling’s direction.   One of Shoemaker’s primary charges seems to have been the visual conceptualization of specific German instruments of war, as described in various internal documents.  Our favorite of these conceptualizations has to be the incredible “Die Walze” rocket, which apparently was designed to operate not unlike a stone skipped across a pond.

At this point in time, most of Linus Pauling’s biography has been combed over pretty thoroughly and analyzed by any number of authors.  It is a rare opportunity, then, to be able to present a large volume of new information on Pauling’s life and work.  This is a project that should prove to be of interest to many different types of users.

Pauling on the Homefront: The Development of Oxypolygelatin, Part 2

Dan Campbell and Linus Pauling in a Caltech laboratory, 1943.

Dan Campbell and Linus Pauling in a Caltech laboratory, 1943.

Science cannot be stopped. Man will gather knowledge no matter what the consequences — and we cannot predict what they will be. Science will go on — whether we are pessimistic, or are optimistic, as I am. I know that great, interesting, and valuable discoveries can be made and will be made…But I know also that still more interesting discoveries will be made that I have not the imagination to describe — and I am awaiting them, full of curiosity and enthusiasm.
Linus Pauling, October 15, 1947.

After developing a promising blood plasma substitute during World War II, Pauling found his funding cut and his contract with the Office of Scientific Research and Defense coming to an end. Rather than abandon the project, the Caltech researchers chose to forge ahead.

Frustrated with the lack of progress, Pauling and his team scraped together enough residual funds to allow for one more series of experiments. Pauling began injecting mice and rabbits with his synthetic plasma, carefully monitoring their health and examining blood samples to determine the effects of the treatment. The results were satisfactory but not enough to put the project back in the good graces of the Committee on Medical Research. Pauling knew that the only way to stimulate interest (and funding) for the project was to prove that his substance could be used in humans. In September of 1944, twelve patients at Los Angeles General Hospital were injected with Oxypolygelatin, all exhibiting favorable reactions. Pauling had the results he needed.

Letter from Linus Pauling to B. O. Raulston, September 19, 1944.

Letter from Linus Pauling to B. O. Raulston, September 19, 1944.

Statement of Work Carried Out Under Contract OEMomr-153, 1944.  Page 1.

Statement of Work Carried Out Under Contract OEMomr-153, 1944. Page 1.

Statement of Work Carried Out Under Contract OEMomr-153, 1944.  Page 2.

Statement of Work Carried Out Under Contract OEMomr-153, 1944. Page 2.

In a final effort to save the project, Pauling submitted one last application, noting the success of his experiments with both animal and human patients. To aid his cause, Pauling attempted to find support at the source, sending individual letters to key members of the CMR.

In October of 1944, the CMR responded to his requests for aid, providing a $10,000, nine-month grant. The CMR had previously assured Pauling that the Committee would arrange any necessary physiological tests that could not be completed at Caltech and, upon the renewal of the Oxypolygelatin contract, they reaffirmed this promise.

While Pauling waited for the CMR to complete arrangements for testing, he and his team continued to refine the production process, ironing out wrinkles that had developed in the course of frantic experimentation. During the early months of the Oxypolygelatin program, Pauling had corresponded often with Robert Loeb, a researcher at the College of Physicians and Surgeons in New York. In a 1943 letter to Loeb he wrote,

It looks as though our method of preparation is not well enough standardized to give a uniform product – the osmotic pressure varies from preparation to preparation. With some evidence from the ultracentrifuge as to how the distribution in molecular weight is changing, we should be able to improve the method.

The lack of uniformity in the substance was a problem for Pauling and his team. In order to locate the irregularities, the researchers needed results from a series of physiological tests. Unfortunately, the CMR had yet to arrange for the promised tests and Pauling’s grant was about to expire.

Letter from Linus Pauling to Robert Loeb, August 17, 1943.

Letter from Linus Pauling to Robert Loeb, August 17, 1943.

By the spring of 1945, Pauling had virtually given up on the project. He had resigned his post as responsible investigator and allowed Campbell to take his place. With the rest of Caltech still knee deep in war research, Pauling had no trouble finding other projects to attract his attention. As a result, his Oxypolygelatin work was relegated to correspondence with gelatin manufacturers and a few curious scientists. In a letter to Chester Keefer of the Committee on Medical Research, Pauling stated,

I feel that the development of Oxypolygelatin has been delayed by a full twelve months by the failure of the CMR to arrange for the physiological testing of the preparation, despite the assurances to me, beginning July 24, 1943, that this testing would be carried out under CMR arrangement. I feel that I myself am also to blame, for having continued to rely upon the CMR, long after it should have been clear to me that the promised action was not being taken and presumably would not be taken.

Letter from Linus Pauling to Chester Keefer, March 12, 1945. Page 1.

Letter from Linus Pauling to Chester Keefer, March 12, 1945. Page 1.

Letter from Linus Pauling to Chester Keefer, March 12, 1945. Page 2.

Letter from Linus Pauling to Chester Keefer, March 12, 1945. Page 2.

Letter from Linus Pauling to Chester Keefer, March 12, 1945. Page 3.

Letter from Linus Pauling to Chester Keefer, March 12, 1945. Page 3.

The project was dead. The CMR had lost interest and no lab in the country was either willing to or capable of performing the tests Pauling required. Even worse for the project, Germany was on the brink of surrender and Japan was losing ground in the Pacific; the war would be over soon and with victory would come the closure of war research programs all over the country.

The team quietly disbanded, each member returning to old projects or starting up fresh lines of research. In 1946, Pauling, Koepfli and Campbell filed for a patent for Oxypolygelatin and its manufacturing process which they immediately transferred to the California Institute Research Foundation.

Oxypolygelatin patent agreement, December 4, 1946.

Oxypoly-gelatin patent agreement, December 4, 1946.

In 1947, the American Association of Blood Banks was founded and in 1948 the American National Red Cross began widespread blood donation campaigns. The genesis of the two programs allowed for large supplies of fresh blood to be dispersed throughout U.S. hospitals on a regular basis, virtually eliminating the need for a plasma substitute during peacetime.

While Pauling was the source of many scientific breakthroughs during his career, in the end Oxypolygelatin was a failed project. Over the following years, he would occasionally discuss his blood plasma work with an interested scientist or mention it at a symposium address, but he never returned to the Oxypolygelatin problem.

For more information on Pauling’s Oxypolygelatin research, read his 1949 project report or view this 1974 letter regarding the development of Oxypolygelatin production in China. For additional Pauling content, visit Linus Pauling: It’s in the Blood! or the Linus Pauling Online portal.