Dr. Pnina Abir-Am, Resident Scholar

Pnina Abir-Am

Dr. Pnina Abir-Am, historian of science at Brandeis University’s Women’s Studies Research Center, is the first individual to complete a term as Resident Scholar in the OSU Libraries for the 2012-13 school year.  An accomplished scholar, Abir-Am has authored and edited a number of noteworthy publications, including the influential book Uneasy Careers and Intimate Lives: Women in Science, 1789-1989 (Rutgers University Press, 1987, 1989) co-edited with Dorinda Outram.

Abir-Am traveled across the country to conduct research in support of another book, DNA at 50: A Revisionist History of the Discovery of DNA Structure, scheduled for publication in 2013.  Delving into the Pauling Papers, the Jack Dunitz Papers, the David and Clara Shoemaker Papers and the History of Science Oral History Collection, Abir-Am sought “to better explain Pauling’s failure with solving the structure of DNA by examining in greater detail his deployment of a group known as ‘Pauling’s boys.'”

In her Resident Scholar presentation, Abir-Am argued – as have many others – that Pauling was ideally positioned to solve the DNA structure, given his great successes in protein research from 1936-1951 and culminating in his elucidation of the alpha-helix.  The question then, is why did he fail to discover the double helix?  Why did he lose the “race” to James Watson and Francis Crick?

The reasons for the failure are manifold, and Abir-Am acknowledges many that have been pointed out by other researchers.  For one, Pauling was very casual in his approach, believing protein structures to be of more importance than DNA.  He also underestimated the research being conducted by certain of his peers, including Erwin Chargaff, J.T. Randall and Rosalind Franklin.

In particular, Abir-Am argues that Pauling disregarded the work being conducted at Kings College, London, believing that physicists like J.T. Randall and Maurice Wilkins could not be expected to solve a complex biological structure like DNA, as their training left them ill-equipped for the task.  By the time Pauling did get serious about the DNA structure, he was too far behind the competition, using poor quality data and rushing a structure to print. Indeed, in the end, Pauling’s attitude toward DNA could be summed up as “too little too late,” a situation further reinforced by the political problems – culminating in the revoking of his passport – that he faced throughout 1952.

Abir-Am sheds new perspective by focusing on the social structure surrounding Pauling at Caltech during the early 1950s. In examining the story from this perspective, Abir-Am wonders what “Pauling’s boys” – understudies, peers and other colleagues including Alexander Rich, Robert Corey, Eddie Hughes, Verner Schomaker, Jerry Donohue, David Harker and Pauling’s second-born son, Peter – could have done to render Pauling’s attempt at DNA more successful.

Abir-Am posits that “the boys” could have done plenty: collect x-ray crystallographic data, collaborate on model building, make calculations, serve as delegates at conferences and even collect intelligence on rivals.  To some extent all of this did occur, but never to the point where Pauling shied away from his manifestly wrong triple-helical structure.

In thinking about what could have gone differently, Abir-Am offers three possible conjectures as to why “the boys,” all hugely talented, didn’t steer Pauling down a more productive path:

  1. They did voice their objections but Pauling ignored them since, after the success of the alpha-helix, he was no longer seeking advice;
  2. Long accustomed to accepting Pauling’s ways, “the boys” lost the ability to criticize his work;
  3. Pauling did not inform “the boys” of his interest in DNA because he wanted to surprise them.

By the conclusion of her stay, Abir-Am was still wrestling with these questions and evaluating her conjectures.  An entire chapter of her DNA book will be devoted to Pauling’s failed structure – we’ll be very excited to read it!

The OSU Libraries Resident Scholar Program offers stipends of up to $2,500 per month to support research using the collections of the Special Collections & Archives Research Center.  For more on the program, check out its homepage. And to read of the work done by past Resident Scholars, see this link.


After seeing this post, Dr. Abir-Am asked that we add some comments of her own, which are included here.

My initial reaction to OSU-SCARC’s (Oregon State University, Special Collections and Archive Research Center) Paulingblog’s entry of 11-21-12, reporting on my lecture “‘Pauling’s Boys’ and the Mystery of DNA Sructure” was “Wow, they did a better job than I might have done on my own!” Indeed, OSU-SCARC’s Program for Resident Scholars is a scholar’s paradise: a spacious reading room flooded by sunlight provides a superb “room with a view” of gorgeous Oregon trees. State of the art equipment scans archival documents straight into your flash drive. Rare, as well as recent, books that scholars might need to complement one’s ongoing archival research, line the reading room’s walls forming tasteful panels. The entrance is flanked by two glass cases for archival exhibits that rotate periodically and give the foyer a museum look.

But above all, SCARC is a paradise because of its angelic people, all eager to help resident scholars make the best of their precious stay. I was amazed at how readily the SCARC personnel not only guided me through the maze of archival documents in their care, but also helped me in preparing essential visuals. By displaying photomontages of Pauling and his associates, I was better able to convey his enigmatic predicament, as a leading molecular structurist who missed the solution of DNA structure, even though he was surrounded by many gifted and loyal associates, or “boys” in his era’s jargon. Along these lines, a slide of attendees at the Pasadena international conference on “Protein and Nucleic Acid Structure” which Pauling organized in September 1953, captured by photo 2 above, (click for enlargement) distinguished between “boys” from rival groups by color circles around their heads. These graphical devices were critical for my new argument that the outcome of competition over DNA structure was a matter of group rather than individual action.

Having spent considerable time in many archives on both sides of the Atlantic ocean, I have to conclude that OSU-SCARC, situated in the remote splendor of the Pacific Northwest, provides greater scholar-friendly opportunities than anything I have seen, including my prior favorite CCAC. (Churchill College Archive Center in Cambridge, UK) I now count SCARC scholars among my cherished colleagues and consider their work to be a valuable resource for my own chapter on Pauling & Co.’s effort with DNA structure. Last but not least, SCARC’s interest in this chapter, as well as in my forthcoming book DNA at 50 proved invigorating in propelling me toward a speedier revision of both chapter and book.

The Paulingblog’s Photo 2 conveys the civilized environment of OSU Libraries’ Willamette Lecture Room. For the sake of completeness, I wish to remind future applicants that the environment outside OSU’s library can also become a much cherished memory, especially the wild rapids of the McKenzie River which we survived during the Labor Day weekend preceding my 9-5-12 talk. Hopefully, the treasures I left untouched, whether in the archive or in the nearby Oregonian wild nature (e.g. Upper Klamath – I signed a petition to open it for rafting – Crater Lake, Sunset Bay) will soon cheer additional beneficiaries of SCARC’s Program for Resident Scholars.

Rafting on the McKenzie River, Labor Day weekend, 2012.

Rafting on the McKenzie River, Labor Day weekend, 2012.

One Response

  1. […] The year 1936 would forever change Wrinch’s life and her legacy; it was the year that she first proposed her theory on the structure of proteins. She called her hypothetical structures “cyclols” and presented the idea to the British Association for the Advancement of Science in 1937. Wrinch believed that proteins were formed into a sort of large hollow cage, made up of small hexagonal sheets of amino acids – the cyclols. This hypothesis made news – an article written at the time by the Associated Press labeled her “Woman Einstein” – and quickly garnered her a certain measure of celebrity, in which she reveled.  Energized, Wrinch took a tour of the US in 1937, and used this trip to spread information about her ideas. Unfortunately Wrinch, in the words of Pnina Abir-am […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: